
ПРЕДПРИЯТИЕ "ВЗЛЁТ"

ЭЛЕКТРОНАСОС СЕРИИ «ИРТЫШ» ТИП ПФ (ПФс)

ПАСПОРТ НЗВ.0301.0000.02 ПС РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.vzlet.nt-rt.ru || эл. почта: vtz@nt-rt.ru

ВНИМАНИЕ:

ПРЕЖДЕ, ЧЕМ ПОЛЬЗОВАТЬСЯ ЭЛЕКТРОНАСОСОМ СЕРИИ «ИРТЫШ» ТИПА ПФ (ПФе) ВНИМАТЕЛЬНО ОЗНАКОМЬТЕСЬ С ПРАВИЛАМИ МОНТАЖА, ПУСКА, ЭКСПЛУАТАЦИИ И УХОДА ЗА НАСОСОМ И ШКАФОМ УПРАВЛЕНИЯ.

ЭЛЕКТРОДВИГАТЕЛЬ НАСОСА ОСНАЩЕН ВСТРОЕННОЙ ЗАЩИТОЙ

ЗАПРЕЩАЕТСЯ:

- ИСПОЛЬЗОВАТЬ НАСОС БЕЗ ШКАФА УПРАВЛЕНИЯ!
- ИЗМЕНЯТЬ СХЕМУ ШКАФА УПРАВЛЕНИЯ!
- ИЗМЕНЯТЬ СХЕМУ ПОДКЛЮЧЕНИЯ НАСОСА К ШКАФУ УПРАВЛЕНИЯ!
- РАБОТА НАСОСА «НА СУХУЮ»!
- ИСПОЛЬЗОВАНИЕ НАСОСА ДЛЯ ПЕРЕКАЧКИ ПИТЬЕВОЙ ВОДЫ

Подключение насоса к источнику энергии и эксплуатация насоса должны производиться квалифицированным специалистом в соответствии с ПУЭ и «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТЭ и ПТБ).

ПЕРЕД ПУСКОМ ЭЛЕКТРОНАСОСА ПРОВЕРИТЬ СООТВЕТСТВИЕ НАПРЯЖЕНИЯ В СЕТИ НАПРЯЖЕНИЮ НАСОСА, УКАЗАННОМУ НА ТАБЛИЧКЕ.

ПРИ ТРАНСПОРТИРОВАНИИ И ХРАНЕНИИ ЭЛЕКТРОНАСОСЫ «ИРТЫШ» **ДОПУСКАЕТСЯ УСТАНАВЛИВАТЬ ГОРИЗОНТАЛЬНОЕ** B положение. ПРИЛОЖЕННУЮ К УПАКОВКЕ СТРОПУ ИСПОЛЬЗОВАТЬ ТОЛЬКО ДЛЯ ТРАНСПОРТИРОВКИ **HACOCOB**

Оглавление

Введе	ение	4
1.	Назначение	4
2.	Основные технические данные	8
	2.1. Показатели энергетической эффективности	8
	2.2. Технические данные насосов	9
	2.3. Технические данные электродвигателей насосов	11
	2.4. Технические данные шкафов управления	13
	2.5. Рабочие характеристики насосов	14
3.	Комплектность	22
4.	Устройство и принцип работы	22
5.	Подготовка к работе	23
	5.1. Меры безопасности при подготовке агрегата к работе	23
	5.2. Подготовка к монтажу	24
	5.3. Монтаж	24
6.	Использование насоса	24
	6.1. Пуск насоса	24
	6.2. Порядок контроля работоспособности насоса	25
	6.3. Возможные неисправности и способы их устранения	26
	6.4. Меры безопасности при работе насоса	28
	6.5. Остановка насоса	28
7.	Техническое обслуживание	29
8.	Ресурсы, сроки службы и хранения	32
	8.1. Указания по выводу из эксплуатации и утилизации	36
9.	Перечень критических отказов в связи с ошибочными действиями	
	персонала	37
10	О.Свидетельство о приемке и консервации	38
	.Транспортирование и хранение	38
12	2.Гарантии изготовителя	39
Рису	нки	
- 3	Рисунок 16 – 60. Общий вид, габаритные и присоединительные	
разме	еры электронасосов «Иртыш»	41
1	Рисунок 61 – 106. Общий вид и габаритные размеры электронасосов	
«Ирт	ыш» с опускным устройством	68
Среп	ения об эксплуатации	114
	ения о хранении	115
	ения о ремонте	116
Своді	onin o pomonto	11(

ВВЕДЕНИЕ

Настоящий паспорт (руководство по эксплуатации (РЭ)) является сопроводительной эксплуатационной документацией, поставляемой с изделием, и предназначен для ознакомления с конструкцией и техническими данными, а также содержит сведения, необходимые для правильной эксплуатации.

работой связи c постоянной по совершенствованию изделия, повышающей его надёжность, конструкцию ΜΟΓΥΤ быть внесены В незначительные изменения, не отражённые в настоящем паспорте.

К монтажу и эксплуатации насосов должен допускаться только квалифицированный персонал, обладающий знанием и опытом по монтажу и обслуживанию насосного оборудования, ознакомленного с конструкцией насоса и настоящего РЭ.

1. НАЗНАЧЕНИЕ

1.1. Электронасосы серии «Иртыш» типа ПФ(ПФс) предназначены для перекачивания бытовых и промышленных загрязнённых жидкостей (фекальных, сточных вод, промышленных стоков), с водородным показателем рН=6,0...9,0 плотностью до 1100 кг/м³, температурой до 323К (50°С), с содержанием различных неабразивных взвешенных частиц максимальным размером согласно таблицы 1 включая коротковолокнистые, (длинноволокнистые для насосов типа ПФс), концентрацией до 2% по массе, абразивных взвешенных частиц не более 1% по объёму, размером до 5мм и микротвердостью не более 9000 МПа.

Таблица 1.

Обозначение насоса «Иртыш»*	Минимальный размер проточной части рабочего колеса, мм	Максимальный размер частиц, мм				
ПФс $50/125 - 1,1/2$	-	40				
$\Pi\Phi c 50/125 - M1,1/2$.0				
$\Pi\Phi 2 \ 50/125 - 1,1/2$	50	40				
$\Pi\Phi 2 50/125 - M1,1/2$	30	40				
$\Pi\Phi 2 \ 50/140 - 3/2$	35	25				
$\Pi\Phi 2 \ 50/150 - 3/2$	25	20				
$\Pi\Phi 2 \ 50/200 - 5,5/2$						
$\Pi\Phi 2 \ 50/200 - 7,5/2$						
$\Pi\Phi 2 \ 50/200 - 11/2$						
$\Pi\Phi 2 \ 50/200 - 15/2$						
$\Pi\Phi 2 \ 50/200 - 18,5/2$						
$\Pi\Phi 2 \ 65/125 - 3/2$	35	25				
$\Pi\Phi 2 65/130 - 3/2$	33	23				
$\Pi\Phi 2 65/135 - 3/2$						
$\Pi\Phi 2 65/135 - 4/2$						
$\Pi\Phi 2 \ 65/145 - 4/2$						
$\Pi\Phi 2 65/150 - 5,5/2$						
$\Pi\Phi 2 \ 65/155 - 3/2$						

$\Pi\Phi 2 65/155 - 4/2$					
$\Pi\Phi 2 65/155 - 5,5/2$					
$\Pi\Phi 2 65/165 - 7,5/2$	25	25			
$\Pi\Phi 2 65/165 - 3/2$	35	25			
ПФ2 65/165 – 4/2					
$\Pi\Phi 2 65/165 - 5,5/2$					
ПФс $65/160 - 3/2$	-	55			
ПФ1 65/160 – 3/2					
ПФ2 65/160 – 3/2					
$\Pi\Phi 2 65/180 - 4/2$	50	40			
$\Pi\Phi 2 65/180 - 5,5/2$					
$\Pi\Phi 2 65/180 - 7,5/2$					
$\Pi\Phi 2 65/250 - 5,5/4$					
$\Pi\Phi 2 65/250 - 7,5/4$					
ПФ2 65/250 – 22/2	25	25			
ПФ2 65/250 — 30/2	35	25			
ПФ2 65/250 — 37/2					
ПФ2 65/250 – 45/2					
ПФ2 65/200 – 15/2					
$\Pi\Phi 2 65/200 - 18,5/2$					
ПФ2 65/200 – 22/2	45	35			
ПФ2 65/200 – 30/2					
ПФ2 65/200 — 37/2					
$\Pi\Phi 2 \ 80/315 - 7,5/4$					
$\Pi\Phi 2 \ 80/315 - 11/4$	45	25			
$\Pi\Phi 2 \ 80/315 - 15/4$	45	35			
$\Pi\Phi 2 \ 80/315 - 18,5/4$					
ПФ2 100/150 – 4/2					
$\Pi\Phi 2\ 100/150 - 5,5/2$	90	70			
$\Pi\Phi 2\ 100/150 - 7,5/2$	80	70			
Π Ф2 100/200 $-$ 5,5/4					
$\Pi\Phi 1 \ 100/240 - 5,5/4$	00	70			
ПФ1 100/240 – 7,5/4	80	70			
$\Pi\Phi 2\ 100/260 - 11/4$					
$\Pi\Phi 2\ 100/280 - 11/4$					
$\Pi\Phi 2\ 100/310 - 7,5/4$	55	45			
$\Pi\Phi 2\ 100/310 - 11/4$					
$\Pi\Phi 2\ 100/310 - 15/4$					
$\Pi\Phi 2 \ 125/315 - 7,5/6$					
$\Pi\Phi 2 \ 125/315 - 11/6$					
$\Pi\Phi 2 \ 125/315 - 15/4$	65	50			
$\Pi\Phi 2 \ 125/315 - 18,5/4$					
$\Pi\Phi 2 \ 125/315 - 22/4$					
ΠΦc 125/315 - 22/4	-	60			

ПФ2 125/315 — 30/4	65	50			
$\Pi\Phi 2 \ 125/315 - 37/4$					
$\Pi\Phi 2 \ 125/400 - 11/6$					
$\Pi\Phi 2 \ 125/400 - 15/6$					
$\Pi\Phi 2 \ 125/400 - 18,5/6$					
$\Pi\Phi 2 \ 125/400 - 22/6$	60	50			
$\Pi\Phi 2 \ 125/400 - 30/4$					
$\Pi\Phi 2\ 125/400 - 37/4$					
$\Pi\Phi 2\ 125/400 - 45/4$					
$\Pi\Phi 2\ 125/400 - 55/4$					
$\Pi\Phi 2\ 150/205 - 5,5/4$					
$\Pi\Phi 2\ 150/205 - 7,5/4$	80	70			
$\Pi\Phi 2\ 150/215 - 7,5/4$					
$\Pi\Phi 2\ 150/255 - 7,5/4$	65	55			
$\Pi\Phi 2\ 150/255 - 11/4$	0.5	JJ			
ПФс $150/315 - 15/6$	-	60			
$\Pi\Phi 2\ 150/315 - 11/6$					
$\Pi\Phi 2\ 150/315 - 15/6$					
$\Pi\Phi 2\ 150/315 - 18,5/6$					
$\Pi\Phi 2\ 150/315 - 22/6$	70	<i>(</i> 0			
$\Pi\Phi 2\ 150/315 - 30/4$	70	60			
$\Pi\Phi 2\ 150/315 - 37/4$					
$\Pi\Phi 2\ 150/315 - 45/4$					
$\Pi\Phi 2\ 150/315 - 55/4$					
ПФс $150/315 - 55/4$	-	60			
$\Pi\Phi 3\ 150/400 - 15/6$					
$\Pi\Phi 3\ 150/400 - 18,5/6$	00	70			
$\Pi\Phi 3\ 150/400 - 22/6$	80	70			
$\Pi\Phi 3\ 150/400 - 30/6$					
$\Pi\Phi 2\ 150/470 - 22/6$	70	70			
$\Pi\Phi 2\ 150/470 - 30/6$	70	60			
$\Pi\Phi 2\ 200/220 - 7,5/4$					
$\Pi\Phi 2\ 200/220 - 11/4$	20	5 0			
$\Pi\Phi 2\ 200/220 - 15/4$	80	70			
$\Pi\Phi 2\ 200/265 - 18,5/4$					
$\Pi\Phi 2\ 200/360 - 18,5/6$	1.10	100			
$\Pi\Phi 2\ 200/360 - 22/6$	140	100			
$\Pi\Phi 3\ 200/400 - 22/8$	80	70			
$\Pi\Phi 2\ 200/450 - 37/6$		· ·			
$\Pi\Phi 2\ 250/400 - 22/6$	120	90			
$\Pi\Phi 2\ 250/400 - 30/6$	•	70			
25.100 2010					

^{*} Обозначение насоса «Иртыш» приведено без указания фактического диаметра рабочего колеса.

1.2. Условное обозначение электронасоса.

Иртыш	П	Φ	c	-	50	/	125] .	120	-	К		20	-	M	1,1	/	2	Ex	Υ/Δ	-	0	1	6
1	2	3	4	-	5	/	6].	7	-	8	-	9	-	10	11	/	12	13	14	-	15	16	17

- 1 Серия насосов Иртыш;
- 2 Тип электродвигателя:
 - П погружной электродвигатель без принудительного охлаждения;
 - Р погружной электродвигатель с принудительным охлаждением;
 - H наружный электродвигатель («сухой»);
- 3 Тип гидравлической части насоса
 - Φ для сточных масс;
 - Д для слабозагрязнённой и чистой воды;
 - Ш шламовый;
 - П песковый;
 - Г грунтовый;
 - О осевой.
- 4 Тип рабочего колеса:
 - 1, 2, 3 и т.д. одно-, двух-, трёх- и т.д. канальное закрытое рабочее колесо;
 - с Вихревое рабочее колесо;

Без обозначения – многоканальное рабочее колесо (для дренажных насосов).

- 5 Номинальный диаметр напорного патрубка;
- 6 Номинальный диаметр рабочего колеса;
- 7 Фактический диаметр рабочего колеса;
- 8 Конструктивное исполнение:

К- рабочее колесо из нержавеющей стали.

БМ - рабочее колесо для перекачивания бумажной массы.

Х- вся проточная часть из нержавеющей стали.

0,1- материал пар трения торцового уплотнения карбид вольфрама;

Без обозначения – штатное исполнение.

Т- комплектация насоса температуростойкими кабелями.

9 – Длина кабеля по спец. заказу, м (например 20м);

Без обозначения – штатная длина кабеля (10м).

10 – Тип питающей сети:

М – монофазный 1Ф 220В;

 $A - 60\Gamma$ ц;

0,2 – трехфазный 220В;

0,66 -660B;

6 - 6000B;

10 - 10000B;

Без обозначения – трехфазный 380В, 50Гц.

- 11 Номинальная мощность электродвигателя;
- 12 Число полюсов электродвигателя;
- 13 Исполнение электродвигателя;

Ех – взрывозащищенного исполнения;

Без обозначения – базовый электродвигатель.

- 14 Тип подключения электродвигателя;
 - 380/660 (220/380) подключение «треугольник/звезда»;

Без обозначения – подключение «звезда».

- 15 Вариант монтажа насоса:
 - 0 мобильный погружной;
 - 1 стационарный погружной (под опускное устройство);
 - 2 стационарный моноблочный горизонтальный;
 - 3 стационарный моноблочный вертикальный;
 - 4 стационарный на плите с муфтой горизонтальный;
 - 5 стационарный в трубе;
 - 6 стационарный на плите с ременной передачей.
- 16 Исполнение шкафа управления:
 - 0 без шкафа управления;
 - 1 ручного управления;
 - 2 автомат с одним или двумя поплавковыми выключателями;
 - 3 автомат для двухнасосной станции.
- 4 автомат с одним поплавковым выключателем климатического исполнения УХЛ1.
- 17 Способ защиты двигателя:
 - 0 без защиты;
 - 1 термозащита;
 - 2 влагозащита;
 - 6 влаго-термозащита;
 - 7 влаго-термозащита, контроль температуры подшипников;
 - 8 влаго-термозащита, контроль вибрации.
- 9 влаго-термозащита, контроль температуры подшипников, контроль вибрации.

2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Рабочие характеристики насосов приведены на рис. 1-15, габаритные и присоединительные размеры на рис. 16-106 (Обозначение насосов «Иртыш» приведено без указания фактического диаметра рабочего колеса).

Мах. температура откачиваемой воды, 50° С не более. Допускается кратковременная работа (15 минут) при температуре 55° С с последующим перерывом в течении 45 минут.

Насос выполнен в климатическом исполнении УХЛ5* ГОСТ 15150-69 (значение температуры воздуха при эксплуатации +1°С ... + 40°С).

Максимальная глубина погружения электронасоса – 10м.

2.1. Показатели энергетической эффективности.

Центробежные насосы относятся к установкам активно расходующим топливно-энергетические ресурсы (ТЭР).

Показатель энергетической эффективности – КПД при номинальной нагрузке, т.е. отношение мощности насоса к мощности на приводном валу.

2.2. Технические данные насосов:

Таблица 2.

		ī		Табли
Обозначение	Подача,	Напор,	КПД насоса,	Macca*,
насоса «Иртыш»	м ³ /ч	M	% не менее	КГ
ПФс $50/125.120 - 1,1/2$	16	6	36	40
ПФс $50/125.98 - 1,1/2$	7	4	35	40
$\Pi\Phi 2 \ 50/125 \ -1,1/2$	16	8	40	40
ПФс $50/125.120 - M1,1/2$	16	6	36	40
ПФс $50/125.98 - M1,1/2$	7	4	35	40
ΠΦ2 50/125 - M1,1/2	16	8	40	40
$\Pi\Phi 2 \ 50/140.138 - 3/2$	25	20	60	60
$\Pi\Phi 2 \ 50/150 \ -3/2$	16	27	35	60
$\Pi\Phi 2 \ 50/200 \ -5,5/2$	16	30	34	140
$\Pi\Phi 2 \ 50/200 \ -7,5/2$	25	37	44	145
$\Pi\Phi 2 50/200.180 - 11/2$	45	34	50	160
ΠΦ2 50/200.195 - 15/2	55	42	42	300
$\Pi\Phi 2 \ 50/200.212 - 18,5/2$	60	50	44	310
$\Pi\Phi 2 65/125 - 3/2$	50	13	61	65
$\Pi\Phi 2 65/130 - 3/2$	40	12	52	60
$\Pi\Phi 2 65/135 - 3/2$	50	10	52	65
$\Pi\Phi 2 65/135 - 4/2$	45	15	64	80
$\Pi\Phi 2 65/145 - 4/2$	60	14	55	80
$\Pi\Phi 2 65/150 - 5,5/2$	58	18	60	90
$\Pi\Phi 2 \ 65/155 - 3/2$	20	24	55	65
$\Pi\Phi 2 65/155 - 4/2$	30	20	52	85
$\Pi\Phi 2 65/155 - 5,5/2$	50	22	59	95
$\Pi\Phi 1 65/160.132 - 3/2$	25	15	39	65
ПФс 65/160.132 – 3/2	20	12	38	65
ПФс 65/160.148 – 3/2	25	14	34	65
$\Pi\Phi 2 65/160 - 3/2$	25	15	40	65
$\Pi\Phi 2 65/165 - 4/2$	12	32	35	80
$\Pi\Phi 2 \ 65/165 - 5,5/2$	30	30	55	90
ПФ2 65/165.165 – 7,5/2	40	30	58	125
ПФ2 65/180.130 – 4/2	50	10	37	80
$\Pi\Phi 2 \ 65/180.135 - 5,5/2$	60	10	40	90
$\Pi\Phi 2 \ 65/180.140 - 7,5/2$	60	15	42	135
$\Pi\Phi 2 \ 65/250.258 - 5,5/4$	40	21	42	170
$\Pi\Phi 2 \ 65/250.258 - 7,5/4$	60	19	55	185
ПФ2 65/250 – 22/2	64	64	54	425
$\Pi\Phi 2 \ 65/250 - 30/2$	75	60	54	440
$\Pi\Phi 2 = 65/250.240 - 37/2$	90	64	42	530
$\Pi\Phi 2 = 65/250.258 - 45/2$	100	80	48	550
$\Pi\Phi 2 = 65/200 - 15/2$	80	25	48	310
$\Pi\Phi 2 = 65/200 - 13/2$ $\Pi\Phi 2 = 65/200.190 - 18,5/2$	80	37	47	320
$\Pi\Phi 2 = 65/200.190 - 16,3/2$ $\Pi\Phi 2 = 65/200.185 - 22/2$	100	32	65	335
$\Pi\Phi 2 = 65/200.185 - 22/2$ $\Pi\Phi 2 = 65/200.195 - 30/2$	100	40	36	400
1144 03/400.133 - 30/4	100	40	30	400

ПФЭ (5/200 210 27/2	110	50	27	400
	110 70	50 16	37 55	480 215
	80	20	50	200
	90	22	36	370
	100	30	44	
	70	12	42	400 190
ПФ1 100/240.238 – 5,5/4	+	11		•
	100	15	50 64	204
	64 70	22	70	105 150
$\Pi\Phi 2\ 100/150 - 7,5/2$		11		
$\Pi\Phi 2\ 100/200 - 5,5/4$	100		64	185
$\Pi\Phi 2\ 100/260 - 11/4$	100	22	49	230
$\Pi\Phi 2\ 100/280 - 11/4$	60	22	50	235
$\Pi\Phi 2\ 100/310 - 7,5/4$	70	16	47	245
$\Pi\Phi 2\ 100/310 - 11/4$	80	22	53	255
$\Pi\Phi 2\ 100/310 - 15/4$	80	32	50	420
$\Pi\Phi 2 \ 125/315.336 - 11/6$	150	13	50	430
$\Pi\Phi 2 \ 125/315 - 15/4$	160	15	55	520
$\Pi\Phi 2 \ 125/315.290 - 18,5/4$	160	20	47	550
$\Pi\Phi c 125/315 - 22/4$	200	22	64	510
$\Pi\Phi 2 \ 125/315.290 - 22/4$	200	18	65	570
$\Pi\Phi 2 \ 125/315.320 - 30/4$	250	20	57	550
$\Pi\Phi 2 \ 125/315.336 - 37/4$	220	30	49	650
ПФ2 125/400.360 – 11/6	125	15	65	475
ПФ2 125/400.406 — 15/6	130	22	52	470
$\Pi\Phi 2 \ 125/400.406 - 18,5/6$	125	22	57	550
$\Pi\Phi 2 \ 125/400.340 - 22/6$	220	18	53	670
$\Pi\Phi 2 \ 125/400.340 - 30/4$	150	33	54	570
$\Pi\Phi 2 \ 125/400.340 - 37/4$	200	32	47	680
$\Pi\Phi 2 \ 125/400.406 - 45/4$	200	50	60	700
$\Pi\Phi 2 \ 125/400.370 - 45/4$	200	40	60	700
$\Pi\Phi 2 \ 125/400.406 - 55/4$	200	50 7	60	750
	200	10	57	210
$\frac{\Pi\Phi 2 \ 150/215 - 7,3/4}{\Pi\Phi 2 \ 150/255 - 11/4}$	145 150	15	63	200
$\Pi\Phi c 150/315 - 15/6$	200	13	44	
	210	9		475
	200	15	65 55	430
	250	10	37	550
	260	14	65	630
	320	15	52	570
	350	16	41	650
	350	25	60	700
	†	20	60	700
	350			
$\Pi\Phi 2\ 150/315.340 - 55/4$	450	20	45	850
$\Pi\Phi c 150/315 - 55/4$	350	30	59 51	830
$\Pi\Phi 3\ 150/400.370 - 15/6$	200	14	51	480

ПФЗ 150/400.370 — 18,5/6	250	9	35	550
Π Ф3 150/400.390 — 22/6	250	15	65	630
ПФЗ 150/400.410 — 30/6	270	21	58	650
$\Pi\Phi 2\ 150/470 - 22/6$	250	17	60	785
$\Pi\Phi 2\ 150/470 - 30/6$	200	28	63	800
$\Pi\Phi 2\ 200/220 - 7,5/4$	225	6	50	210
$\Pi\Phi 2\ 200/220 - 11/4$	250	7	53	220
$\Pi\Phi 2\ 200/265 - 15/4$	200	15	64	430
$\Pi\Phi 2\ 200/265 - 18,5/4$	250	15	58	440
$\Pi\Phi 2\ 200/360 - 18,5/6$	252	9	48	600
$\Pi\Phi 2\ 200/360 - 22/6$	400	10	64	800
$\Pi\Phi 2\ 200/450 - 37/6$	450	20	78	900
$\Pi\Phi 2\ 250/400 - 30/6$	660	10	70	850

^{*}Масса насосов указана без шкафа управления и дополнительных устройств.

2.3. Технические данные электродвигателей насосов:

Тип – специального исполнения, герметизированный, встроенного типа, асинхронный, трёхфазный с короткозамкнутым ротором. Степень защиты IP68.

Таблица 3.

							,				
Обозначение насоса «Иртыш»*	Мощность, кВт	Напряжение, В	Частота тока, Гц	Соединение обмоток по схеме	Номинальный ток, А	Частота вращения, об /мин	Класс нагревостойкости				
	1 1	380			2,6	2730 2730					
	1,1	220			6,8	2745 2745					
	3				7	2940 2940					
$\Pi\Phi 2 \ 50/200 - 5,5/2$	5,5				10,7	2940					
$\Pi\Phi 2 \ 50/200 - 7,5/2$	7,5		l		ı				15	2895	
$\Pi\Phi 2 \ 50/200 - 11/2$	11		50	*	21	2895	F				
$\Pi\Phi 2 \ 50/200 - 15/2$	15		30	^	30	2940 F					
$\Pi\Phi 2 \ 50/200 - 18,5/2$	18,5	380			35	2940					
$\Pi\Phi 2 65/125 - 3/2$	3	300									
$\Pi\Phi 2 65/130 - 3/2$	3				7	2940					
$\Pi\Phi 2 65/135 - 3/2$	3										
$\Pi\Phi 2 65/135 - 4/2$	4				7,9	2940					
$\Pi\Phi 2 65/145 - 4/2$	4										
$\Pi\Phi 2 65/150 - 5,5/2$	5,5				10,7	2940					
$\Pi\Phi 2 65/155 - 3/2$	3				7	2940					

$\Pi\Phi 2 65/155 - 4/2$	4				7,9	2940	
$\Pi\Phi 2 65/155 - 5,5/2$	5,5	-			10,7	2940	
$\Pi\Phi 1 65/160 - 3/2$,	1					
$\Pi\Phi c 65/160 - 3/2$	3				7	2940	
$\Pi\Phi 2 65/160 - 3/2$							
$\Pi\Phi 2 65/165 - 4/2$	4	-			7,9	2940	
$\Pi\Phi 2 65/165 - 5,5/2$	5,5	1			10,7	2940	
$\Pi\Phi 2 65/165 - 7,5/2$	7,5				15	2895	
$\Pi\Phi 2 65/180 - 4/2$	4	1			7,9	2940	
$\Pi\Phi 2 65/180 - 5,5/2$	5,5	1			10,7	2940	
$\Pi\Phi 2 65/180 - 7,5/2$	7,5				15	2895	
$\Pi\Phi 2 65/250 - 5,5/4$	5,5				11	1430	
$\Pi\Phi 2 65/250 - 7,5/4$	7,5				15	1450	
$\Pi\Phi 2 65/250 - 22/2$	22				42	2940	
$\Pi\Phi 2 65/250 - 30/2$	30				56	2940	
$\Pi\Phi 2 65/250 - 37/2$	37				67	2940	
$\Pi\Phi 2 65/250 - 45/2$	45				81,5	2940	
$\Pi\Phi 2 65/200 - 15/2$	15				30	2940	
$\Pi\Phi 2 65/200 - 18,5/2$	18,5				35	2940	
$\Pi\Phi 2 65/200 - 22/2$	22				42	2940	
$\Pi\Phi 2 65/200 - 30/2$	30				56	2940	
$\Pi\Phi 2 65/200 - 37/2$	37				67	2950	
$\Pi\Phi 2 \ 80/315 - 7,5/4$	7,5	290	50	*	15,8	1450	Г
$\Pi\Phi 2 \ 80/315 - 11/4$	11	380	50	*	22,9	1440	F
$\Pi\Phi 2 \ 80/315 - 15/4$	15				29	1460	
$\Pi\Phi 2\ 80/315 - 18,5/4$	18,5				35	1460	
$\Pi\Phi 1\ 100/240 - 5,5/4$	5,5				12	1430	
$\Pi\Phi 1\ 100/240 - 7,5/4$	7,5				15,8	1450	
$\Pi\Phi 2\ 100/150 - 5,5/2$	5,5				10,7	2940	
$\Pi\Phi 2\ 100/150 - 7,5/2$	7,5				15	2895	
$\Pi\Phi 2\ 100/200 - 5,5/4$	5,5				12	1430	
$\Pi\Phi 2\ 100/280 - 11/4$	11				22,9	1440	
$\Pi\Phi 2\ 100/260 - 11/4$	11				22,9	1440	
$\Pi\Phi 2\ 100/310 - 7,5/4$	7,5				15,8	1450	
$\Pi\Phi 2\ 100/310 - 11/4$	11				22,9	1440	
$\Pi\Phi 2\ 100/310 - 15/4$	15				29	1460	
$\Pi\Phi 2 \ 125/315 - 11/6$	11				23	970	
$\Pi\Phi 2 \ 125/315 - 15/4$	15				29	1460	
$\Pi\Phi 2 \ 125/315 - 18,5/4$	18,5				35	1460	
ΠΦc 125/315 - 22/4	22				42	1460	
$\Pi\Phi 2 \ 125/315 - 22/4$	22						
$\Pi\Phi 2\ 125/315 - 30/4$	30				56	1460	
$\Pi\Phi 2 \ 125/315 - 37/4$	37				72	1470	
$\Pi\Phi 2 \ 125/400 - 11/6$	11				23	970	
$\Pi\Phi 2\ 125/400 - 15/6$	15				31	970	
$\Pi\Phi 2 \ 125/400 - 18,5/6$	18,5				37	975	

$\Pi\Phi 2\ 125/400 - 22/6$	22				44,5	975	
$\Pi\Phi 2\ 125/400 - 30/4$	30				56	1460	
$\Pi\Phi 2\ 125/400 - 37/4$	37				72	1470	
$\Pi\Phi 2\ 125/400 - 45/4$	45				87	1470	
$\Pi\Phi 2\ 125/400 - 55/4$	55				107	1485	
$\Pi\Phi 2\ 150/205 - 7,5/4$	7,5				15,8	1450	
$\Pi\Phi 2\ 150/215 - 7,5/4$	7,5				13,6	1430	
$\Pi\Phi 2\ 150/255 - 11/4$	11				22,9	1440	
$\Pi\Phi 2\ 150/315 - 11/6$	11				23	970	
$\Pi\Phi 2\ 150/315 - 15/6$	15				31	970	
$\Pi\Phi c \ 150/315 - 15/6$	15				31	970	
$\Pi\Phi 2\ 150/315 - 18,5/6$	18,5				37	975	
$\Pi\Phi 2\ 150/315 - 22/6$	22				44,5	975	
$\Pi\Phi 2\ 150/315 - 30/4$	30				56	1460	
$\Pi\Phi 2\ 150/315 - 37/4$	37				72	1470	
$\Pi\Phi 2\ 150/315 - 45/4$	45				87	1470	
$\Pi\Phi 2\ 150/315 - 55/4$	55				107	1485	
$\Pi\Phi c \ 150/315 - 55/4$	55				107	1403	
$\Pi\Phi 3\ 150/400 - 15/6$	15				31	970	
$\Pi\Phi 3\ 150/400 - 18,5/6$	18,5				37	975	
$\Pi\Phi 3\ 150/400 - 22/6$	22				44,5	975	
$\Pi\Phi 3\ 150/400 - 30/6$	30	380	50	*	57	975	F
$\Pi\Phi 2\ 150/470 - 22/6$	22	360	30	^	44,5	975	I.
$\Pi\Phi 2\ 150/470 - 30/6$	30				57	975	
$\Pi\Phi 2\ 200/220 - 7,5/4$	7,5				15,8	1450	
$\Pi\Phi 2\ 200/220 - 11/4$	11				22,9	1440	
$\Pi\Phi 2\ 200/265 - 15/4$	15				29	1460	
$\Pi\Phi 2\ 200/265 - 18,5/4$	18,5				35	1460	
$\Pi\Phi 2\ 200/360 - 18,5/6$	18,5				37	975	
$\Pi\Phi 2\ 200/360 - 22/6$	22				44,5	975	
$\Pi\Phi 2\ 200/450 - 37/6$	37				76,5	975	
$\Pi\Phi 2\ 250/400 - 22/6$	22				44,5	975	
$\Pi\Phi 2\ 250/400 - 30/6$	30				57	975	

^{*} Обозначение насоса «Иртыш» приведено без указания фактического диаметра рабочего колеса.

ВНИМАНИЕ! Запрещается работа электронасоса на режимах, выходящих за пределы рабочей зоны характеристик.

2.4 Технические данные шкафов управления с устройством защиты двигателя УЗД-8Р (с УЗД-8Р и устройством кондиционности фаз УКФ-4) приведены в паспорте на соответствующий шкаф.

Рабочие характеристики насосов рис. 1-15:

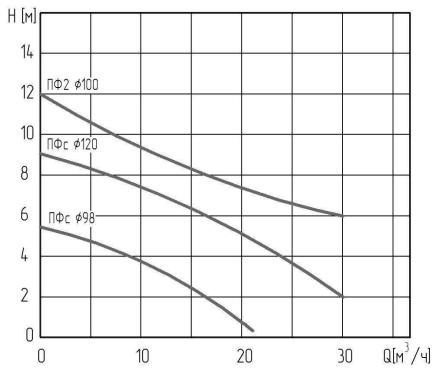


Рис. 1 Рабочие характеристики насоса «Иртыш»: ПФс 50/125.120 - 1,1/2; ПФс 50/125.120 - M1,1/2 ПФс 50/125.98 - 1,1/2; ПФс 50/125.98 - M1,1/2ПФ2 50/125.100 - 1,1/2; ПФ2 50/125.100 - M1,1/2

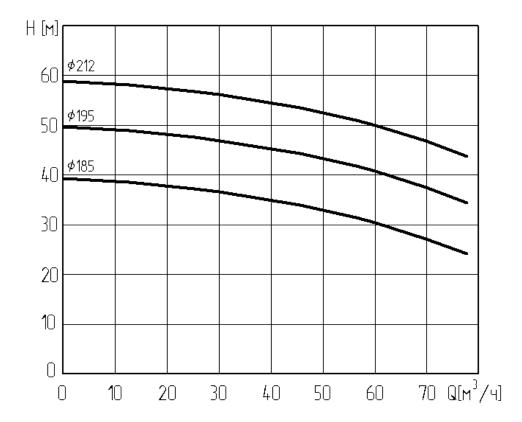


Рис. 2 Рабочие характеристики насоса «Иртыш»:

 $\Pi\Phi 2 \quad 50/200.180 - 11/2$

 $\Pi\Phi 2 \quad 50/200.195 - \ 15/2$

 $\Pi\Phi 2 \quad 50/200.212 - 18,5/2$

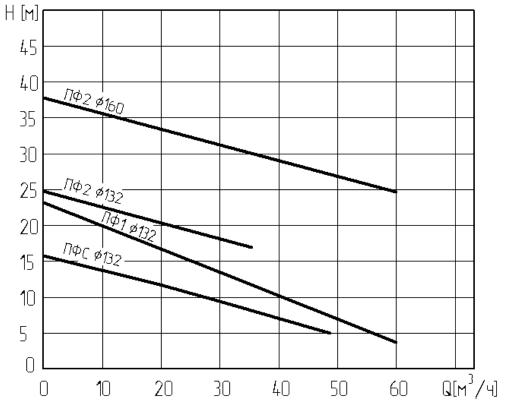


Рис. 3 Рабочие характеристики насоса «Иртыш»: П Φ c 65/160 — 3/2, П Φ 1 65/160 — 3/2 П Φ 2 65/160 — 3/2, П Φ 2 65/160 — 7,5/2

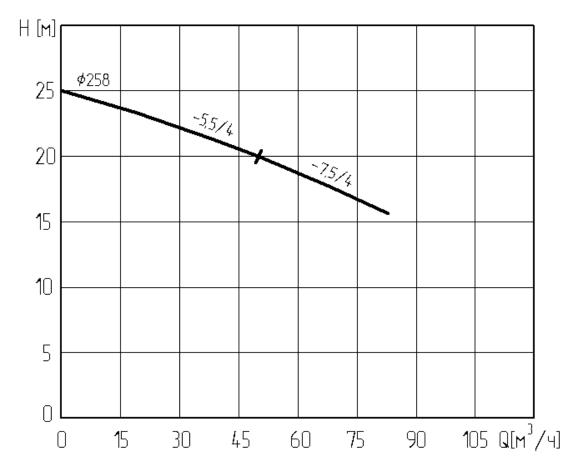


Рис. 4 Рабочие характеристики насоса «Иртыш»: $\Pi\Phi 2 = 65/250.258 - 5,5/4$

 $\Pi\Phi 2 \quad 65/250.258 - 7,5/4$

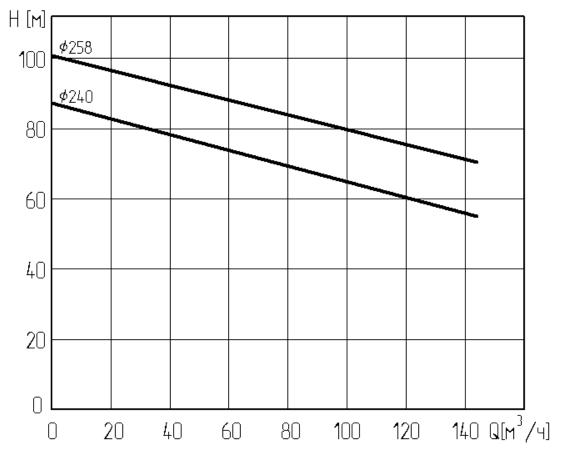


Рис. 5 Рабочие характеристики насоса «Иртыш»:

 $\Pi\Phi 2$ 65/250.240 - 37/2 $\Pi\Phi 2$ 65/250.258 - 45/2

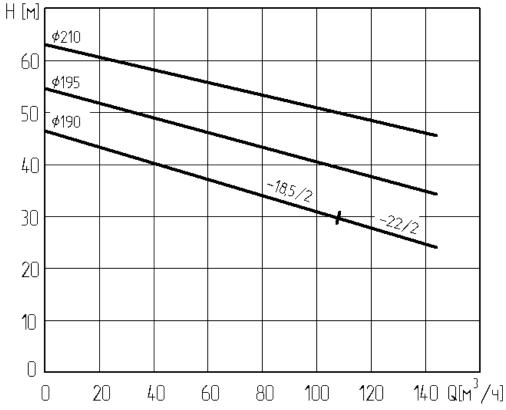


Рис. 6 Рабочие характеристики насоса «Иртыш»:

 $\Pi\Phi 2 = 65/200.190 - 18,5/2, \, \Pi\Phi 2 = 65/200.190 - \, 22/\,2$

 $\Pi\Phi 2 = 65/200.195 - 30/2, \Pi\Phi 2 = 65/200.210 - 37/2$

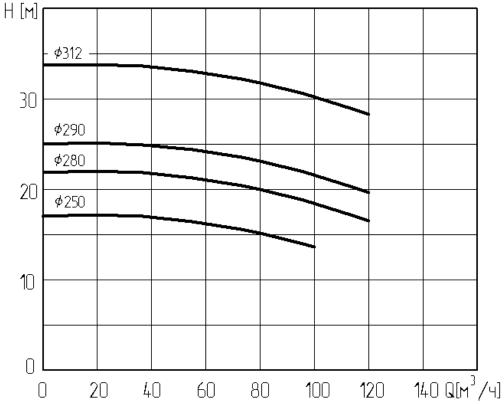


Рис. 7 Рабочие характеристики насоса «Иртыш»: $\Pi\Phi 2$ 80/315.250 – 7,5/4, $\Pi\Phi 2$ 80/315.280 – 11/4 $\Pi\Phi 2$ 80/315.290 – 15/4, $\Pi\Phi 2$ 80/315.312 – 18,5/4

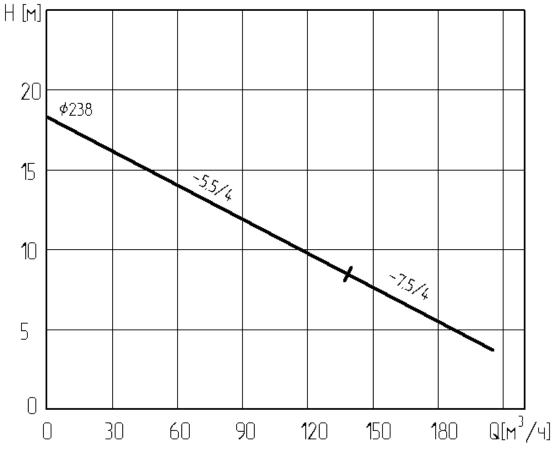


Рис. 8 Рабочие характеристики насоса «Иртыш»: $\Pi\Phi 1\ 100/240.238 - 5,5/2$ $\Pi\Phi 1\ 100/240.238 - 7,5/2$

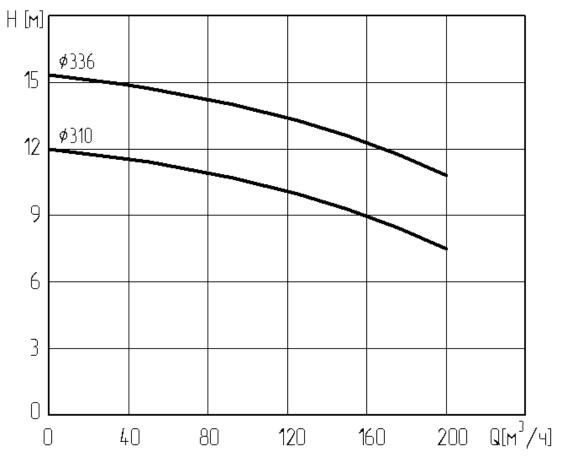


Рис. 9 Рабочие характеристики насоса «Иртыш»: $\Pi\Phi 2\ 125/315.336 -\ 11/\ 6$

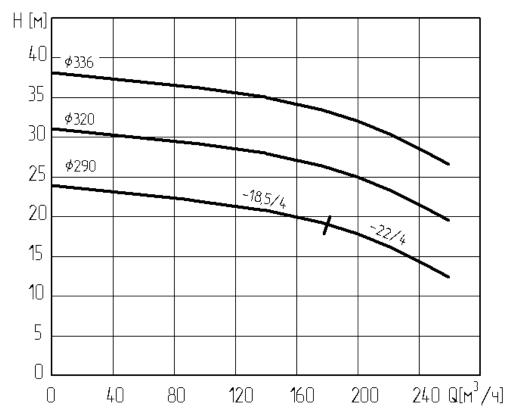


Рис. 10 Рабочие характеристики насоса «Иртыш»: ПФ2 125/315.290 — 18,5/4, ПФ2 125/315.290 — 22/4 ПФ2 125/315.320 — 30/4, ПФ2 125/315.336 — 37/4

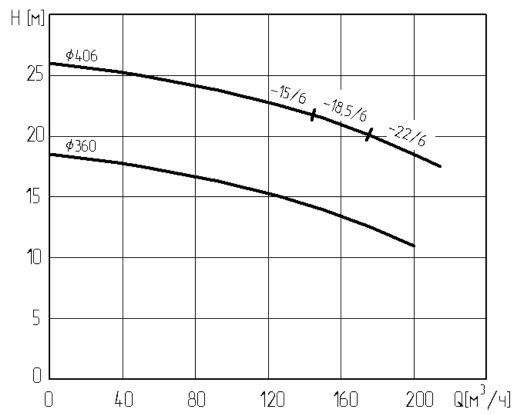


Рис. 11 Рабочие характеристики насоса «Иртыш»: ПФ2 125/400.360 — 11/6, ПФ2 125/400.406 — 15/6 ПФ2 125/400.406 — 18,5/6, ПФ2 125/400.406 — 22/6 ПФ2 125/400. — 30/6

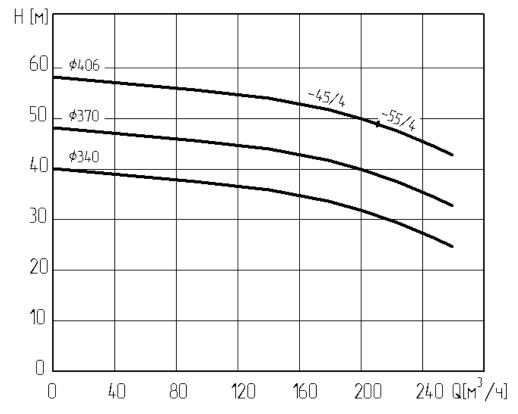


Рис. 12 Рабочие характеристики насоса «Иртыш»: $\Pi\Phi 2\ 125/400.340-\ 37/\ 4$, $\Pi\Phi 2\ 125/400.406-\ 45/\ 4$ $\Pi\Phi 2\ 125/400.370-\ 45/\ 4$, $\Pi\Phi 2\ 125/400.406-\ 55/\ 4$

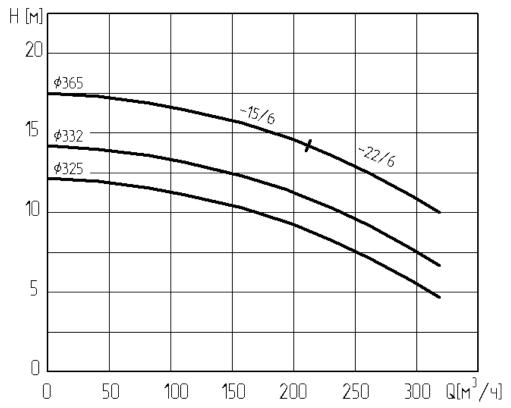


Рис. 13 Рабочие характеристики насоса «Иртыш»: ПФ2 150/315.325 — 11/6, ПФ2 150/315.365 — 15/6 ПФ2 150/315.332 — 18,5/6, ПФ2 150/315.365 — 22/6 ПФ2 150/315. — 30/6

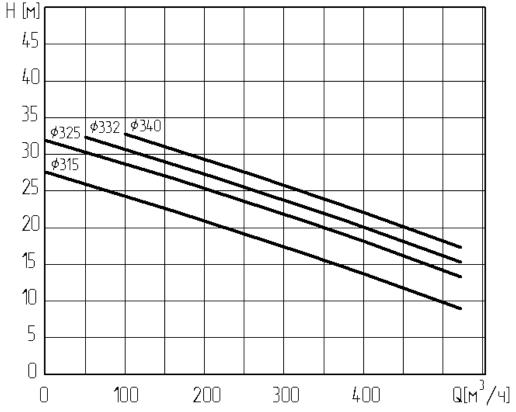


Рис. 14 Рабочие характеристики насоса «Иртыш»:

 $\Pi\Phi 2\ 150/315.315 -\ 37/4$

 $\Pi\Phi 2\ 150/315.332 -\ 45/4$

 $\Pi\Phi 2\ 150/315.325-\ 45/\ 4$

 $\Pi\Phi 2\ 150/315.340-\ 55/\ 4$

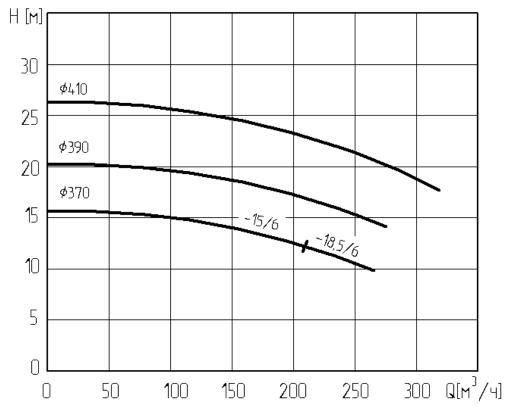


Рис. 15 Рабочие характеристики насоса «Иртыш»:

 $\Pi\Phi 3\ 150/400.370-\ 15/6$

 $\Pi\Phi 3\ 150/400.370-18,5/6$

 $\Pi\Phi 3\ 150/400.390-\ 22/\ 6$

 $\Pi\Phi 3\ 150/400.410 -\ 30/6$

Примечания:

- $1.\ \Pi$ араметры даны при работе насосов на чистой воде в сети с частотой тока $50\ \Gamma$ ц.
- $2.\ \Pi$ ри эксплуатации допускается снижение напора до $10\ \%.$

3. КОМПЛЕКТНОСТЬ

3.1. Комплект поставки

- 1. Электронасос, со встроенным кабелем (-ями) длиной 10м (либо иных длин по спец. заказу)------1 шт.
- 2. Шкаф управления (с паспортом)-----1 шт.
- 3. Паспорт-----1 экз.
- 4. Поплавковый выключатель(-ли), (только для шкафов управления исполнения 2 (см. усл. обозначение))-----1комп.

Запасные части к электронасосу, а также дополнительные устройства поставляются по отдельному договору и за отдельную плату.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- 4.1. Электронасос серии «Иртыш» погружного типа является моноблочным насосным агрегатом. В зависимости от исполнения состоит из:
 - электродвигателя;
 - гидравлической части;
 - системы влагозащиты;
 - системы термозащиты;
 - шкафа управления;
 - поплавкового(-ых) выключателя(-лей);
 - дополнительных устройств (в комплект поставки не входят).
- 4.1.1. Электродвигатель рис. 16-60 поз. 1 специального исполнения, герметизированный, встроенного типа, асинхронный, трёхфазный (монофазный) с короткозамкнутым ротором, оснащен встроенными в обмотки термодатчиками, расположен вертикально над гидравлической частью и охлаждается перекачиваемой средой.
- 4.1.2. *Гидравлическая часть* состоит из центробежного одно- (двух-; трёх- и т.д.) канального закрытого или вихревого рабочего колеса рис. 16-60 поз. 2 и спирального корпуса поз. 3, закрытого корпусом «масляной» камеры поз. 15.
- 4.1.3. Система влагозащиты двигателя состоит из:
- *комплекта подвижных уплотнений*, обеспечивающих двойную герметизацию по валу со стороны гидравлической части двумя торцовыми уплотнениями сильфонного типа или манжетой и торцовым уплотнением.
- *масляной камеры*, обеспечивающей дополнительную преграду на пути проникновения влаги с осуществлением смазки подвижных частей уплотнений и отвода части тепла от двигателя и подшипников.
- *датичка влаги*, обеспечивающего отключение электродвигателя в случае попадания влаги сверх нормы в масляную камеру насоса (в исполнении насоса -016; -026).
- *комплекта неподвижных уплотнений*, обеспечивающих герметичность стыков внутренних полостей насоса резиновыми кольцами круглого сечения и герметичность по наружной изоляции кабелей резиновыми уплотнениями специальной формы.
- 4.1.4. Система термозащиты двигателя состоит из:
- термодатчиков, встроенных в статор, обеспечивающих отключение электродвигателя в случае его перегрева.

- 4.1.5. Шкаф управления обеспечивает:
- подключение электродвигателя насоса к питающей сети без дополнительной защитно-пусковой аппаратуры.
- информирование текущего состояния насоса («сеть», «работа», «авария» и т.д.).
- защиту силовых цепей электродвигателя и цепей управления от коротких замыканий и перегрузок по току.
- отключение электродвигателя при перегреве.
- отключение электродвигателя при попадании влаги в масляную камеру насоса (только для насосов со способом защиты двигателя 6 (см. усл. обозначение)).
- отключение электродвигателя при обрыве фаз (в исполнении шкафа с устройством контроля фаз УКФ-4).
- запрет на включение при плохой изоляции обмоток двигателя.
- отключение электродвигателя при несоответствии напряжения питающей сети заданным нормам или при неправильном порядке фаз (в исполнении шкафа с устройством контроля фаз УКФ-4).

В паспорте на шкаф управления показаны:

- 1) общий вид шкафов управления на рис. 13;
- 2) монтажные схемы на рис. 2-4, 6;
- 3) принципиальные схемы подключения на рис. 7-12.
- 4.1.6. *Поплавковый выключатель* рис. 61-106 поз. 7 служит для автоматического включения и выключения насоса на заданных уровнях перекачиваемой жидкости.
- 4.1.7. Дополнительные устройства.
 - 1) Опускное устройство служит для механизации подсоединения и отсоединения насоса от трубопровода. Состоит из патрубка погружного поз. 1, захвата поз. 2 и кронштейна поз. 4 (рис. 61-106).
 - 2) Направляющие поз. 3 служат для перемещения насоса в вертикальном направлении до сцепления захвата с патрубком погружным.

5. ПОДГОТОВКА К РАБОТЕ

При приемке насоса проверьте:

- 1) Комплектность поставки;
- 2) Наличие гарантийных пломб меток на торцах болтов.
- 5.1. Меры безопасности при подготовке агрегата к работе.
- 5.1.1. При погрузке, разгрузке и перемещении насоса должны соблюдаться требования ГОСТ12.3.020-80.
- 5.1.2. Насос следует перемещать только за рым болты (ручку). При транспортировке насоса в упаковке, использовать приложенную стропу.
- 5.1.3. При испытаниях и эксплуатации насосов должны быть учтены требования ГОСТ Р 52743-2007. Эксплуатация должна производиться в соответствии с «Правилами технической эксплуатации электроустановок потребителями» и «Правилами техники безопасности при эксплуатации электроустановок потребителем».
- 5.1.4. В соответствии с требованиями ГОСТ Р МЭК 60204-1-2007 после монтажа агрегата и установки всех электрических соединений (перед включением агрегата в работу) проверить цепь защиты на непрерывность, пропуская через неё ток от 0,2A

до 10А, имеющего напряжение холостого хода 24В переменного или постоянного тока. Результаты испытаний должны быть соизмеримы с расчетными данными по сечениям, длине и материалу проводников в соответствующих цепях защитного заземления.

- 5.1.5. При монтаже и эксплуатации агрегата сопротивление изоляции, измеренное при 500В постоянного тока между проводами силовой цепи и цепи защиты относительно корпуса не должно быть менее 1 МОм.
 - 5.2. Подготовка к монтажу
- 5.2.1 Монтаж и наладку электронасоса производить в соответствии с настоящим руководством по эксплуатации.
- 5.2.2. После доставки агрегата на место установки необходимо освободить его от упаковки, убедиться в наличии заглушек на входном и выходном патрубках и сохранности консервационных и гарантийных пломб, проверить наличие эксплуатационной документации.
- 5.2.3. Удалить консервацию со всех наружных поверхностей насоса и протереть их ветошью, смоченной в керосине или уайт-спирите.

Расконсервация проточной части насоса не производится, если консервирующий состав не оказывает отрицательного влияния на перекачиваемый продукт.

5.3. Монтаж.

- 1) Расконсервируйте насос путём снятия заглушек входа и выхода гидравлической части, удаления упаковки с концов кабелей.
- 2) Проверьте наличие масла в масляной камере (см. таблицу 6), для этого нужно придать насосу горизонтальное положение, вывернуть пробку рис.16-60 поз. 8, слить масло. Убедиться в необходимом количестве по объёму, залить масло в полость масляной камеры;
- 3) Проверьте соответствие напряжения в сети напряжению, указанному на табличке насоса;
- 4) Аккуратно произведите контрольное прокручивание рабочего колеса насоса от руки на 1-2 оборота. Вращение должно происходить без заеданий, заклиниваний, посторонних шумов, с незначительным усилием.
- 5) Установить агрегат на заранее подготовленный фундамент, выполненный в соответствии со строительными нормами.

6. ИСПОЛЬЗОВАНИЕ НАСОСА

6.1. Пуск насоса.

Произведите подключение к электросети согласно маркировке на концах кабелей в соответствие с приведенными монтажными схемами (согласно паспорту на шкаф управления).

ВНИМАНИЕ! Шкаф управления и насос должны быть надежно заземлены. Отсутствие надежного заземления приведет к аварийному отключению насоса.

При использовании двухуровневого поплавка (с регулируемым гистерезисом) замыкающий контакт такого поплавка подключается к клеммам (B_1) и (B_2) клеммника X4. Клеммы (O_1) и (O_2) остаются свободными.

1) Переведите рычаг переключателя «Ручное»/«Автомат» в нужное Вам положение:

- положение переключателя «Автомат» переводит электронасос в автоматическое управление при котором регулирование уровня откачиваемой жидкости производиться с помощью поплавковых (-ого) выключателей (-ля).

ВНИМАНИЕ! При этом насос запустится в работу, если датчики бака (поплавковые выключатели) выдают сигнал на включение насоса.

- положение переключателя «Ручное» переводит управление электронасосом в ручной режим.
- 2) Запуск насосов с мощностью электродвигателя более 3 кВт без устройства плавного пуска необходимо производить в ручном режиме следующим образом:
 - откройте задвижку на нагнетании и заполните насос рабочей жидкостью;
 - закройте задвижку на нагнетании;
- нажмите кнопку "Пуск", запустится двигатель, загорится светодиод "Работа" на дверце шкафа управления;
- после создания насосом напора постепенно откройте задвижку на нагнетании, установив заданный режим работы.

ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ ЗАПУСК НАСОСА

при полностью открытой задвижке на напорном трубопроводе.

- 3) При аварийном отключении устройства необходимо определить причину отключения в соответствии с пунктами таблиц 6 и 7 «Возможные неисправности и способы их устранения» (см. паспорт на шкаф управления) и принять решение о возможности дальнейшей эксплуатации насоса.
- 4) Для обеспечения работы в автоматическом режиме с помощью поплавковых выключателей (ДБ1, ДБ2), необходимо установить уровни откачиваемой жидкости и перевести переключатель «Ручное»/«Автомат» в положение «Автомат».

ВНИМАНИЕ! При работе электронасоса (мощностью свыше 3кВт) в автоматическом режиме необходимо обеспечить условия для плавного запуска и останова электродвигателя насоса. Рекомендуется применение устройств плавного пуска (УПП) или частотно-регулируемого приводов (ЧРП), или других устройств.

- 6.2. Порядок контроля работоспособности насоса.
- 6.2.1. Переведите рычаг автоматического выключателя силовых цепей управления QF1 в верхнее положение, при этом на дверце шкафа управления загорится светодиод «Сеть». Включите автоматический выключатель цепей управления QF2 на устройстве защиты двигателя (УЗД-8Р) загорится светодиод «Сеть», через 2-3 сек. на УЗД-8Р загорится светодиод "Работа", остальные светодиоды на УЗД-8Р не светятся.
- 6.2.2. Расположите насос таким образом, чтобы было обеспечено визуальное наблюдение за вращением рабочего колеса. Запустите насос на 2...3 секунды последовательным нажатием кнопок «Пуск» (загорается светодиод «Работа») и «Стоп», и внимательно наблюдая за вращением рабочего колеса, определить его направление. Рабочее колесо должно вращаться по направлению стрелки, изображенной на корпусе насоса.

ВНИМАНИЕ! Неправильное направление вращения вала (против стрелки) приводит:

- к нерасчётным радиальным нагрузкам на рабочем колесе, которые вызывают изгибающий момент вала, под действием которого происходит разрушение сопрягаемых поверхностей рабочего колеса и корпуса спирального (крышки с опорами для насоса «Иртыш» ПФ(с) 65/160 3/2), и в конечном итоге к излому вала;
 - к существенному снижению производительности и КПД насоса;
 - к перегрузке электродвигателя и выходу насоса из строя.

Для изменения направления вращения вала электродвигателя насоса следует поменять местами две из трех жил питающего кабеля на клеммнике X1 рис. 2-4 (см. паспорт на шкаф) в шкафу управления.

Если используется шкаф управления с устройством кондиционности фаз УКФ-4 необходимо сделать следующее:

По устройству кондиционности фаз УКФ-4 проверьте правильность подключения шкафа управления к питающей сети:

- если светится индикатор «Норма», то питающая сеть имеет нормальные параметры и электронасос готов к работе;
- если светится индикатор «Фазы», то необходимо отключить напряжение и поменять местами любые две фазы питающего кабеля (см. выше), после чего повторить проверку правильности подключения шкафа управления к питающей сети.
- если светится индикатор «Напр», то необходимо при помощи вольтметра проверить напряжение на всех трёх фазах и устранить отклонение напряжения от заданных параметров;
- если не светится ни один индикатор, возможны две причины: оборван нейтральный провод, либо нет напряжения на фазе «А» (фаза «А» используется для питания $YK\Phi$ -4).
 - 6.3. Возможные неисправности и способы их устранения.

Перечень возможных неисправностей с указанием причин, а также способы быстрого и простого их выявления и устранения приведен в таблице 4.

Обозначение состояния светодиодов:

- •- символ состояния «светодиод не горит»;
- О- символ состояния «светодиод горит»;
- O/●- символ состояния «светодиод мигает».

ВНИМАНИЕ:

- любое другое состояние сигнальных светодиодов неустранимое повторным запуском насоса свидетельствует о сбое в работе УЗД, требующее ремонта шкафа управления на заводе изготовителе;
- выполнение работ, где возникает необходимость срывать гарантийную пломбировку, следует выполнять после истечения срока гарантии.

Возможные состояния светодиодов и состояние насоса отражены в таблице 4 паспорта на шкаф управления.

Возможные неисправности и способы их устранения (для насосов «Иртыш» исполнения -016, -026).

Таблица 4.

T					таолица +.
Состояние насоса	СВ(Н	Состояние светодиодов на шкафу управления В разричительной в разричитель		Возможная причина	Ваши действия
1	2	3	4	5	6
1. насос не включается, отключается	•	•	•	Перерыв в подаче электроэнергии, обрыв цепи питания;	а) проверьте подачу электроэнергии и напряжение сети; проверьте цепь питания и устраните обрыв;
во время работы;	0	•	0*	Сработало устройство защиты двигателя УЗД-8Р (тип аварии уточняется по индикации на УЗД-8Р по паспорту на шкаф управления) 1) перегрев термодатчика электродвигателя (работа насоса не в рабочей зоне); 6) заклинивание рабочего колеса; в) температура перекачиваемой среды ≥ 50℃; г) неисправность электродвигателя. 2) Вода на датчике влаги: 3) Нарушение изоляции обмоток статора относительно корпуса электродвигателя. 4) Обрыв/замыкание датчика температуры. 5) Замыкание датчика влажности. 6) Обрыв датчика влажности. Сработало устройство кондиционности фаз УКФ-4 (для шкафов управления Иртыш от 11 до 55кВт)	а) привести рабочие характеристики насоса в норму; б) прочистите зону рабочего колеса и корпуса спирального; в) см. раздел 2. настоящего паспорта; г) произведите ремонт на заводе-изготовителе. 2) просушить внутреннюю полость масляной камеры до удаления следов влаги; 3) Обратитесь на завод-изготовитель. 4) Проверьте кабель насоса на наличие повреждений. Проверьте правильность подключения кабеля насоса к шкафу управления. 5) Выполните мероприятия указанные в п. 2 «Вода на датчике влаги» Проверьте кабель насоса на наличие повреждений. 6) Проверьте кабель насоса на наличие повреждений. Проверьте надежность заземления шкафа управления. Приведите питающую сеть в норму.
	0	•	•	Некондиционная питающая сеть (для шкафов управления Иртыш от 4 до 11кВт);	Привести питающую сеть в норму;

					<u></u>
2.насос отключился				а) нарушено питание насоса- отсутствие одной или двух фаз;	а) устраните нарушение и запустите
				отсутствие однои или двух фаз;	насос повторно;
- сработал автоматиче		•	•	б) неисправность цепи питания шкафа или электродвигателя;	б) устраните неисправность или отправьте насос на завод-
ский					изготовитель;
выключате ль;				в) заклинивание рабочего колеса;	в) прочистите зону рабочего колеса;
3.низкая				а) неправильное направление	а) см. раздел 6.4. настоящего
производите	0	0		вращения рабочего колеса;	паспорта;
льность)			б) засорение проточной части	б) прочистить проточную часть
насоса.				насоса;	насоса, разобрав насосный узел;
4.посторонн ий шум, повышенна я вибрация	0	0	•	Износ подшипников.	Заменить изношенные подшипники.
5. утечка выше				а) давление на входе в насос выше допустимого;	а) отрегулировать давление на входе в насос;
нормы через торцовое уплотнение.	0	0	•	б) износ торцового уплотнения.	б) заменить торцовое уплотнение.
6. уровень воды упал; насос работает.	0	0	•	Неисправность в поплавковом выключателе	Замените поплавковый выключатель.
7. уровень воды	7. уровень			а) неисправность в поплавковом выключателе	а) замените поплавковый выключатель.
вырос; насос не включился	0	0	•	б) обрыв цепи поплавкового выключателя	б) устраните обрыв

^{*} При нажатии на кнопку "пуск" в ручном режиме или при верхнем положении поплавков в автоматическом режиме.

- 6.4. Меры безопасности при работе насоса.
- 6.4.1. Шкаф управления должен быть защищен от попадания влаги.
- 6.4.2. Корпус шкафа управления должен быть надежно заземлен.
- 6.4.3. ЗАПРЕЩЕНО поднимать и переносить работающие электронасос и шкаф управления.

Категорически запрещается подъем, перенос и опускание насоса за кабель. Насос следует перемещать только за рым - болты (ручку).

Категорически запрещается эксплуатация насоса без шкафа управления, непосредственно от сети.

- 6.4.4. При выполнении любых ремонтных работ с электронасосом серии «Иртыш» и шкафом управления предварительно отключить шкаф управления от питающей сети.
 - 6.5. Остановка насоса.
 - 1) Переведите переключатель «Ручное»/«Автомат» в положение "Ручное".
- 2) Остановку насоса с мощностью электродвигателя более 3 кВт без устройства плавного пуска необходимо производить в ручном режиме следующим образом:
 - плавно закройте задвижку на напорном трубопроводе;
- нажмите кнопку «Стоп», погаснет светодиод «Работа», на дверце шкафа управления.

ВНИМАНИЕ! Не допускается работа насоса при закрытой напорной задвижке свыше 2 мин.

3) Переведите рычаг автоматического выключателя в нижнее положение, при этом погаснут все светодиоды на шкафу управления.

7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Регулярные проверки и планово-предупредительное техобслуживание гарантируют более надёжную работу насоса и шкафа управления.

- 7.1. Рекомендуется производить техническое обслуживание на заводе-изготовителе или в сервисном центре. Адреса приведены на стр. 40 настоящего паспорта.
- 7.2. Эксплуатация.
- 7.2.1. В течение срока гарантийного обслуживания в процессе эксплуатации следует:
- 1) при срабатывании датчика влажности, слить масло из масляной камеры, проверить наличие воды в масле; залить чистое трансформаторное масло ГОСТ 982-80 (или иной руководящий документ на изготовление) объемом, указанным в таблице 6. В случае частого срабатывания датчика влажности (период срабатывания менее 250 часов, в течение которых насос находится в перекачиваемой жидкости) или срабатывание его при отсутствии воды в масляной камере (в масле), насос необходимо отправить на завод-изготовитель для ремонта.
- 2) проверка состояния масла может показать, была ли течь. Если в масле слишком много воды, то причиной тому могут быть:
 - недостаточно затянутая пробка корпуса камеры;
- повреждены кольцо резиновое на пробке корпуса камеры или её уплотнительная поверхность в корпусе камеры;
 - повреждено торцовое уплотнение.

ВНИМАНИЕ! Если имеется утечка в торцовом уплотнении, то в масляной камере может быть избыточное давление. Держать ветошь над пробкой корпуса камеры для предотвращения брызг при откручивании пробки.

- 3) убедится в плотности затяжки зажимов кабелей проверить, что зажим кабеля затянут до упора.
- 4) не допускать, чтобы кабель имел изгибы менее пяти диаметров кабеля или был пережат посторонними предметами.
- 5) при перерывах в работе насос промыть чистой водой для удаления загрязнений из гидравлической полости насоса;
 - 6) не допускается эксплуатация насоса при наличии льда в проточной части; ЗАПРЕЩАЕТСЯ ПОЛЬЗОВАТЬСЯ ПАЯЛЬНОЙ ЛАМПОЙ

для оттаивания льда в насосе – этим можно повредить резиновые детали.

- 7) регулярно проверяйте затяжку клемм в шкафу управления перед первым пуском и далее не реже одного раза в месяц.
- 8) при наличии неисправности в шкафу управления обратиться к аттестованному электрику.
- 9) не реже чем через 720 часов работы проверять шкаф управления и токоподводящий кабель на отсутствие механических повреждений, обрыва заземляющего провода, замыкания на корпус.

Проверка должна производиться аттестованным электриком.

7.2.2. В течение гарантийного и послегарантийного сроков обслуживания:

Осмотр пускателей шкафа управления проводить один раз в месяц. При осмотре проверить:

- внешний вид пускателя, состояние дугогасительной камеры, магнитопровода, контактов;
 - состояние присоединительных проводов;
 - отсутствие затирания подвижных частей пускателя (вручную);
 - состояние затяжки винтов.

Осмотр автоматических выключателей шкафа управления. Выключатели надо содержать в чистоте, чтобы на них не попадали вода, масло, эмульсия и т.д. Периодически, через каждые 2 тысячи включений, но не реже одного раза в год выключатель нужно осматривать и протирать спиртом подвижные и неподвижные контакты. Осмотр выключателя также нужно производить после каждых двух отключений короткого замыкания. После каждого отключения по току короткого замыкания рекомендуется произвести 8-10 раз операцию «Включение-отключение» без тока. Для того чтобы осмотреть выключатель, необходимо снять крышку, отвинтив крепящие винты.

При осмотре: очистить выключатель от копоти и корольков металла, смазать приборным маслом марки МВП ГОСТ 1805-76 или маслом марки 132-08 (ОКБ-122-5) ГОСТ 18375-73 трущиеся части механизма свободного расцепления и подшипники, расположенные в крайних полюсах, проверить целостность пружин, дугогасительных камер, состояние контактов. Проверить затяжку крепежа в местах подсоединения внешних проводников.

7.2.3. После истечения срока гарантийного обслуживания.

7.2.3.1. Замена рабочего колеса.

Для замены износившегося рабочего колеса следует произвести частичную разборку в следующей последовательности:

- 1) Установить электронасос на опорную подставку, с упором в верхнюю часть насоса, не зажимая кабель, вертикально корпусом спиральным вверх.
- 2) Отвернуть метизы рис. 16-60 поз. 16. крепления корпуса спирального поз. 3 с корпусом камеры поз. 15, снять корпус спиральный;

Для насосов «Иртыш» $\Pi\Phi 1$ 65/160 — 3/2; $\Pi\Phi c$ 65/160 — 3/2: отвернуть метизы крепления крышки с опорами рис. 17 поз.14.

- 3) Отвернуть метизы рис. 16-60 поз. 10 крепления рабочего колеса с валом электродвигателя;
 - 4) Снять рабочее колесо рис. 16-60 поз. 2;
- 5) Установить шпонку на вал, установить кондиционное рабочее колесо и произвести сборку в обратной последовательности.

ВНИМАНИЕ! Момент затяжки болтовых соединений для насосов «Иртыш» ПФС 50/125 – 1,1/2; ПФС 50/125 – М1,1/2; ПФ1 65/160 – 3/2; ПФС 65/160 – 3/2; в случае переборки насосов при техническом обслуживании не более 12...15 Н*м (1,2...1,5кГс*м). При превышении усилия затяжки возможно разруше ние корпуса электродвигателя в месте крепления с корпусом камеры (с кор пусом спиральным для насосов «Иртыш» ПФ1 65/160 – 3/2; ПФС 65/160 – 3/2). См. выноску Б к рис. 16, 17.

7.2.3.2. Замена износившихся нижнего и верхнего торцовых уплотнений (манжеты).

Рекомендуется замену торцовых уплотнений производить на заводеизготовителе или в сервисном центре, с проведением полного объёма работ по испытаниям изделия на герметичность.

- 1) Установить электронасос горизонтально на твёрдую поверхность, либо горизонтально на весу, так чтобы одна из пробок корпуса масляной камеры была в нижнем положении, отвернуть пробку рис.16-60 поз. 8, слить масло. Для насосов $\Pi\Phi(c)$ 65/180-4/2, $\Pi\Phi(c)$ 65/180-4/2 слив масла из масляной камеры возможен при вертикальном положении насоса.
- 2) Установить электронасос на опорную подставку, с упором в верхнюю опору подшипника, вертикально корпусом спиральным вверх.

Для замены износившихся нижнего и верхнего торцовых уплотнений (манжеты) следует произвести частичную разборку в следующей последовательности:

- 3) Отвернуть метизы рис. 16-60 поз. 16 крепления корпуса спирального поз. 3 с корпусом камеры поз. 15.
 - 4) Снять корпус спиральный с подставкой поз. 14.

Для насосов «Иртыш» $\Pi\Phi(c)$ 65/160 – 3/2:

отвернуть метизы крепления крышки с опорами рис. 17 поз.14.

отвернуть метизы поз. 10 крепления рабочего колеса с валом электродвигателя;

- 5) Снять рабочее колесо поз. 2, при необходимости использовать съёмник;
- 6) Демонтировать подвижную часть нижнего торцового уплотнения поз. 5, при необходимости использовать съёмник;
- 7) Отвернуть метизы поз. 9 крепления корпуса камеры поз. 15 со стаканом подшипника поз. 17 и корпусом электродвигателя поз. 18;

При наличии в конструкции крышки камеры поз. 20:

Отвернуть метизы поз. 19 крепления крышки камеры поз. 20 с корпусом камеры поз. 15;

Снять корпус камеры (крышку камеры), при необходимости использовать съёмник или отжимные болты, совместно с неподвижной частью торцового уплотнения.

Снять съёмником стопорное кольцо перед торцовым уплотнением поз. 4, демонтировать подвижную часть верхнего торцового уплотнения, при необходимости использовать съёмник (демонтировать манжету для насосов «Иртыш» П Φ c 50/125 – 1,1/2; П Φ c 50/125 – M1,1/2; П Φ 1 65/160 – 3/2; П Φ c 65/160 – 3/2 сняв стакан подшипника);

При наличии, снять крышку подшипника, совместно с неподвижной частью торцового уплотнения, при необходимости использовать отжимные болты.

- 8) Для осмотра полости корпуса электродвигателя на присутствие в нём влаги приподнять ротор со стаканом подшипника, обращая внимание на провода датчика влажности поз. 13, не допуская их обрыва, отсоединить провода, вынуть ротор со стаканом подшипника;
- 9) При наличии влаги в корпусе электродвигателя и на внутренней стороне стакана подшипника протереть ветошью и высушить до полного удаления влаги;
- 10) Убедиться в отсутствии износа пар трения и сильфонов торцовых уплотнений и при необходимости заменить;

11) При сборке тщательно очистить посадочные места под неподвижные узлы и вал от твердого налета продукта, очистку производить «до металла», но избегать царапин; при установке допускаются только незначительные осевые усилия, избегайте перекосов.

Установка неподвижного узла торцового уплотнения:

- 1) Смочить посадочное место и Γ образную манжету неподвижной части торцового уплотнения мыльной водой;
- 2) При установке узла в посадочное место необходимо пользоваться оправкой с мягкой наклейкой для обеспечения равномерности усилия и исключения возможности повреждения поверхности пары трения. Перекос неподвижной части торцового уплотнения и местное выдавливание Г-образной манжеты не допускаются.
- 3) Поверхность трения не смазывать, очистить её от грязи, а непосредственно перед установкой протереть безворсовой тканью, слегка смоченной спиртом.

Установка подвижного узла торцового уплотнения:

- 1) Нанести масло трансформаторное на уплотнительную поверхность подвижной части торцового уплотнения. Наличие посторонних частиц в масле и на уплотнительной поверхности подвижной части торцового уплотнения после нанесения масла не допускается. Аккуратно, не повреждая сильфона, через оправку, установить подвижное торцовое уплотнение, предварительно смазав сильфон маслом трансформаторным;
 - 2) Дальнейшую сборку производить в порядке обратном разборке.
- 3) Проверить правильность сборки; для этого необходимо провернуть вал собранного насоса от руки; вал должен проворачиваться с некоторым усилием, но без заеданий.

8. РЕСУРСЫ, СРОКИ СЛУЖБЫ И ХРАНЕНИЯ, КРИТЕРИИ ПРЕДЕЛЬНЫХ СОСТОЯНИЙ.

Показатели надежности насоса при эксплуатации в рабочем интервале характеристики указаны в таблице 5.

Таблица 5

Наименование показателя	Значение
	показателя
Средняя наработка на отказ, ч, не менее	7000
Средний ресурс до главного техобслуживания, ч, не	20000
менее	
Средний срок службы, лет, не менее	6
Среднее время восстановления, ч, не более	8

Примечания

- 1. Показатели надежности агрегата уточняются по сведениям с мест эксплуатации.
- 2. Критерием отказа является нарушение нормального функционирования насоса.

Указанные ресурсы, сроки службы и хранения действительны при соблюдении потребителем требований настоящего руководства по эксплуатации.

Показатели надежности комплектующих изделий по технической документации на эти изделия.

Межремонтные периоды для погружных насосов «Иртыш»:

Технический осмотр -620 часов (но не реже 1 раза в месяц);

Текущее техобслуживание -3330 часов (но не реже 1 раза в год); Среднее техобслуживание -6660 часов (но не реже 1 раза в 2 года); Главное техобслуживание -20000 часов (но не реже 1 раза в 6 лет);

По истечении назначенного ресурса (срока хранения, срока службы) агрегат изымается из эксплуатации и принимается решение о направлении его в ремонт, об утилизации, о проверке и об установлении нового назначенного ресурса (срока хранения, срока службы).

Примерное содержание работ по видам ремонта погружных насосов «Иртыш».

Ежедневный технический осмотр: мониторинг параметров насосов (давление на входе в насос, давление на выходе из насоса, расход, сила тока, напряжение, уровень жидкости и т.д.)

Технический осмотр:

- 1. Обобщение данных мониторинга и сообщение на завод изготовитель;
- 2. Проверка электрических параметров электродвигателя, датчиков насоса;
- 3. Проверка направления вращения, надежность посадки и крепления рабочего колеса;
- 4. Проверка целостности корпуса спирального, без разборки насоса;
- 5. Проверка целостности резиновой оболочки кабеля, проверка изоляции;
- 6. Проверка крепления насоса к раме (к фундаменту), рамы к фундаменту для насосов с рубашкой охлаждения, захватного устройства и направляющих для насосов с опускным устройством.

Текущее техобслуживание:

- 1. Состав работ технического осмотра.
- 2. Проверка уплотнительного зазора м/у рабочим колесом и корпусом спиральным, при необходимости восстановление;
- 3. Оценка внешнего вида на предмет повреждений рабочего колеса и корпуса спирального, проверка размеров посадочных мест, при необходимости восстановление;
- 4. Проверка остаточного дисбаланса, при необходимости динамическая балансировка рабочего колеса;

Среднее техобслуживание:

- 1. Состав работ текущего техобслуживания;
- 2. Оценка состояния резьбовых соединений корпусных деталей;
- 3. Притирка торцовых уплотнений, при необходимости замена торцовых уплотнений;
- 4. Разборка и оценка состояния корпусных деталей изделия, при необходимости восстановление;
- 5. Замена уплотнительных колец по стыкам корпусных деталей агрегата;
- 6. Проверка геометрических размеров посадочных мест под подшипники в корпусных деталях, при необходимости восстановление;
- 7. Оценка состояния подшипников качения, при необходимости замена;
- 8. Замена смазки в подшипниках;
- 9. Замена трансформаторного масла;
- 10. Проверка ротора на биение и его динамическая балансировка.
- 11. Осмотр, проверка геометрических размеров и при необходимости восстановление шпоночных соединений и резьб вала.
- 12. Осмотр, проверка геометрических размеров соединения вала и рабочего колеса, при необходимости восстановление.
- 13. Испытания на герметичность всех стыков изделия, включая кабель;
- 14. Обкатка и опробование насоса в работе.

Главное техобслуживание:

- 1. Состав работ среднего техобслуживания.
- 2. Замена подшипников качения, торцовых уплотнений.
- 3. Калибровка резьбовых соединений, при необходимости восстановление мест поврежденных коррозией.
- 4. Осмотр фундамента, при необходимости ремонт.
- 5. Обкатка и испытание насоса с проверкой паспортных данных

Таблица 6.

	таолица с	
Обозначение	Объем заливаемого масла, мл	
насоса «Иртыш»*		
ПФс $50/125 - 1,1/2$		
$\Pi\Phi c$ 50/125 — M1,1/2	250	
$\Pi\Phi 2 50/125 - 1,1/2$		
$\Pi\Phi 2 50/125 - M1,1/2$		
$\Pi\Phi 2 50/140 - 3/2$	До излива из горизонтально расположенного резьбового отверстия	
$\Pi\Phi 2 50/150 - 3/2$	корпуса камеры, при вертикальном положении насоса ≈360	
$\Pi\Phi 2 50/200 - 5,5/2$		
$\Pi\Phi 2 50/200 - 7,5/2$	2000	
$\Pi\Phi 2 50/200 - 11/2$		
$\Pi\Phi 2 50/200 - 15/2$	До излива из горизонтально расположенного резьбового отверстия	
$\Pi\Phi 2 50/200 - 18,5/2$	корпуса камеры, при вертикальном положении насоса ≈1500	
$\Pi\Phi 2 = 65/125 - 3/2$		
$\Pi\Phi 2 = 65/130 - 3/2$	До излива из горизонтально расположенного резьбового отверстия	
$\Pi\Phi 2 = 65/135 - 3/2$	корпуса камеры, при вертикальном положении насоса ≈360	
$\Pi\Phi 2 = 65/135 - 4/2$	До излива из горизонтально расположенного резьбового отверстия	
$\Pi\Phi 2 = 65/145 - 4/2$	корпуса камеры, при вертикальном положении насоса ≈900	
$\Pi\Phi 2 = 65/150 - 5,5/2$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈1200	
$\Pi\Phi 2 = 65/155 - 3/2$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈360	
$\Pi\Phi 2 = 65/155 - 4/2$	До излива из горизонтально расположенного резьбового отверстия	
$\Pi\Phi 2 = 65/155 - 5,5/2$	корпуса камеры, при вертикальном положении насоса ≈1200	
$\Pi\Phi 1 \ 65/160 - 3/2$		
ПФс $65/160 - 3/2$	300	
$\Pi\Phi 2 = 65/160 - 3/2$		
$\Pi\Phi 2 = 65/165 - 3/2$		
$\Pi\Phi 2 = 65/165 - 4/2$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈1200	
$\Pi\Phi 2 = 65/165 - 5,5/2$	— корпуса камеры, при вертикальном положении насоса ≈1200	
$\Pi\Phi 2 = 65/165 - 7,5/2$	1600	
$\Pi\Phi 2 = 65/180 - 4/2$		
$\Pi\Phi 2 = 65/180 - 5,5/2$	1200	
$\Pi\Phi 2 = 65/180 - 7,5/2$	1400	
$\Pi\Phi 2 65/250 - 5,5/4$		
$\Pi\Phi 2 65/250 - 7,5/4$	1400	
$\Pi\Phi 2 = 65/250 - 22/2$	До излива из горизонтально расположенного резьбового отверстия	
$\Pi\Phi 2 = 65/250 = 22i/2$	корпуса камеры, при вертикальном положении насоса ≈1800	
1172 05/250 50/2		

$\Pi\Phi 2 = 65/250 - 37/2$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈3000	
$\Pi\Phi 2 = 65/250 - 45/2$		
$\Pi\Phi 2 = 65/200 - 15/2$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении	
$\Pi\Phi 2 = 65/200 - 18,5/2$		
$\Pi\Phi 2 = 65/200 - 22/2$		
$\Pi\Phi 2 = 65/200 - 30/2$	насоса ≈1500	
$\Pi\Phi 2 = 65/200 - 37/2$		
$\Pi\Phi 2 80/315 - 7,5/4$	2200	
$\Pi\Phi 2 80/315 - 11/4$	2200	
$\Pi\Phi 2 80/315 - 15/4$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈5000	
$\Pi\Phi 2 80/315 - 18,5/4$		
$\Pi\Phi 1 \ 100/240 - 5,5/4$		
$\Pi\Phi 1 \ 100/240 - 7,5/4$	1300	
$\Pi\Phi 1\ 100/150 - 4/2$		
$\Pi\Phi 1 \ 100/150 - 5,5/2$	1100	
$\Pi\Phi 1\ 100/150 - 7,5/2$		
$\Pi\Phi 1\ 100/200 - 5,5/4$	1300	
$\Pi\Phi 1\ 100/280\ -11/4$	2000	
$\Pi\Phi 1\ 100/260 - 11/4$	2000	
$\Pi\Phi 1\ 100/310 - 7,5/4$	2000	
$\Pi\Phi 1\ 100/310 - 11/4$	2000	
$\Pi\Phi 2\ 100/310 - 15/4$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈5500	
$\Pi\Phi 2\ 125/315 - 7,5/6$	Kepily w kminepal, ipil aspilikmianeni nononvinni investu ee ee	
$\Pi\Phi 2 \ 125/315 - \ 11/6$		
$\Pi\Phi 2\ 125/315 -\ 15/4$		
$\Pi\Phi 2\ 125/315 - 18,5/4$	До излива из горизонтально расположенного резьбового	
$\Pi\Phi 2 \ 125/315 - \ 22/4$	отверстия корпуса камеры, при вертикальном положении насоса ≈5500	
ПФс $125/315 - 22/4$		
$\Pi\Phi 2\ 125/315 -\ 30/4$		
$\Pi\Phi 2 \ 125/315 - \ 37/4$		
$\Pi\Phi 2\ 125/400 -\ 11/6$	До излива из горизонтально расположенного резьбового	
$\Pi\Phi 2\ 125/400 -\ 15/6$	отверстия корпуса камеры, при вертикальном положении	
$\Pi\Phi 2 \ 125/400 - 18,5/6$	насоса ≈8500	
$\Pi\Phi 2\ 125/400 -\ 22/6$		
$\Pi\Phi 2\ 125/400 -\ 30/\ 4$	До излива из горизонтально расположенного резьбового	
$\Pi\Phi 2\ 125/400 -\ 37/4$	отверстия корпуса камеры, при вертикальном положении	
$\Pi\Phi 2\ 125/400 -\ 45/\ 4$	насоса ≈8500	
$\Pi\Phi 2\ 125/400 -\ 55/\ 4$	1	
$\Pi\Phi 2\ 150/205 -\ 5,5/\ 4$	1250	
$\Pi\Phi 2\ 150/205 - 7,5/4$	1250	
$\Pi\Phi 2 \ 150/215 - \ 7,5/4$	1400	
$\Pi\Phi 2 \ 150/255 - 7,5/4$		
$\Pi\Phi 2 \ 150/255 - \ 11/4$	2700	
$\Pi\Phi c 150/315 - 15/6$	До излива из горизонтально расположенного резьбового	
11#0 150/515 15/0	To hombal its reprisentation particulority personation	

$11\Phi 2 \ 150/315 - 11/6$	отверстия корпуса камеры, при вертикальном положении насоса ≈5500
$\Pi\Phi 2 \ 150/315 - \ 15/6$	nacoca ~3300
$\Pi\Phi 2\ 150/315 - 18,5/6$	
$\Pi\Phi 2\ 150/315 -\ 22/6$	
$\Pi\Phi 2\ 150/315 -\ 30/4$	До излива из горизонтально расположенного резьбового
$\Pi\Phi 2\ 150/315 -\ 37/4$	отверстия корпуса камеры, при вертикальном положении
$\Pi\Phi 2\ 150/315 -\ 45/4$	насоса ≈5500
$\Pi\Phi 2\ 150/315 -\ 55/\ 4$	
ПФс $150/315 - 55/4$	
$\Pi\Phi 3\ 150/400 -\ 15/6$	До излива из горизонтально расположенного резьбового отверстия
Π Ф3 150/400 — 18,5/6	корпуса камеры, при вертикальном положении насоса ≈8500
ПФЗ 150/400 — 22/ 6	До излива из горизонтально расположенного резьбового отверстия
ПФЗ 150/400 — 30/ 6	корпуса камеры, при вертикальном положении насоса ≈8500
$\Pi\Phi 2\ 150/470 - 22/6$	До излива из горизонтально расположенного резьбового
ПФ2 150/470 — 30/6	отверстия корпуса камеры, при вертикальном положении насоса ≈5500
$\Pi\Phi 2\ 200/220 - 7,5/4$	2200
$\Pi\Phi 2\ 200/220 - 11/4$	2300
$\Pi\Phi 2\ 200/265 - 15/4$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈5500
$\Pi\Phi 2\ 200/265 - 18,5/4$	До излива из горизонтально расположенного резьбового отверстия
$\Pi\Phi 2\ 200/360 - 18,5/6$	корпуса камеры, при вертикальном положении насоса ≈5000 До излива из горизонтально расположенного резьбового
· · · · · · · · · · · · · · · · · · ·	отверстия корпуса камеры, при вертикальном положении насоса
$\Pi\Phi 2\ 200/360 - 22/6$	≈6000
$\Pi\Phi 3\ 200/400 - 22/8$	
$\Pi\Phi 2\ 200/450 - 37/6$	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса
	отверстия корпуса камеры, при вертикальном положении насоса ≈6000
$\Pi\Phi 2\ 250/400 - 22/6$	До излива из горизонтально расположенного резьбового
$\Pi\Phi 2\ 250/400 - 30/6$	отверстия корпуса камеры, при вертикальном положении насоса ≈5500
	~5500

отверстия корпуса камеры, при вертикальном положении

ПФ2 150/315

8.1. Указания по выводу из эксплуатации и утилизации.

Конструкция электронасоса «Иртыш» разработана таким образом, что обеспечивается высокая степень ремонтопригодности. Практически в любом случае агрегат можно восстановить на заводе-изготовителе или в авторизованном сервисном центре до состояния нового насоса. Критерием предельного состояния будет являться экономическая нецелесообразность восстановления работоспособного состояния, когда затраты на ремонт будут составлять значительную часть от стоимости нового насоса.

В случае непригодности насоса для использования его по назначению производится его утилизация. Решение об утилизации принимает эксплуатирующая организация с учетом рекомендаций завода-изготовителя на основании акта о дефектации агрегата. Все изношенные узлы и детали сдаются в пункты приема вторсырья.

^{*} Обозначение насоса «Иртыш» приведено без указания фактического диаметра рабочего колеса.

9. ПЕРЕЧЕНЬ КРИТИЧЕСКИХ ОТКАЗОВ В СВЯЗИ С ОШИБОЧНЫМИ ДЕЙСТВИЯМИ ПЕРСОНАЛА

Перечень критических	Возможные ошибочные действия	Действия персонала в
1		_
отказов	персонала, приведшие к аварии	случае аварии
Облом конца вала с	Неправильное подключение	Отключить насос –
рабочим колесом	насоса в сеть (перепутаны фазы)	отправить в ремонт
Остановка насоса по		
причине попадания воды:		
в корпус электродвиг.;	1) Механическое воздействие на	 //
	корпус насоса (удар, падение);	
	2) Чрезмерное усилие затяжки	
	болтов, повлекшее разрушение	
	корпусных деталей;	
	3) Использование насоса при	
	отключенных цепях управления;	
	3 1	
в корпус масляной	Работа «на сухую» как следствие	<u>//</u>
камеры;	– выход из строя торцового	
•	уплотнения;	
Перегрев двигателя	Отсутствие контроля за уровнем	//
насоса	откачиваемой среды:	

10. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И КОНСЕРВАЦИИ

Насос соответствует техническим условиям ТУ 3631-001-11903018-99, испытан, признан годным к эксплуатации и законсервирован.

Обозначение электронасоса	
Заводской номер	
Дата приемки	
Ответственный за приемку Дата консервации	подпись М.П.
Ответственный за консерваци	подпись
Дата реализации ""	

Вариант защиты изделия ВЗ-0 в сочетании с ВЗ-1 и ВЗ-4, вариант внутренней упаковки ВУ-3 в комплексе с ВУ-9 по ГОСТ 9.014-78.

11. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Насос и шкафы управления транспортируются любым видом транспорта, с соблюдением необходимых мер безопасности и правил перевозок грузов для каждого вида транспорта.

Насос следует перемещать только за рым - болты (ручку). При транспортировке насоса в упаковке из гофрокартона, использовать приложенную стропу.

Условия транспортирования насоса в части воздействия климатических факторов – 8ОЖЗ ГОСТ 15150-69, в части воздействия механических факторов – С ГОСТ 23170-78. Условия транспортирования насоса в упаковке из гофрокартона – 4Ж2 ГОСТ 15150-69, в части воздействия механических факторов – С ГОСТ 23170-78.

Насосы при транспортировании рекомендуется устанавливать так, чтобы ось насоса по длине вала была перпендикулярна направлению движения транспорта.

Длительность транспортирования насоса при низких температурах (-30°C÷ -40°C) - не более 30суток, (ниже -40°C) — не более 10суток, с обязательной выдержкой в теплом помещении перед вводом в эксплуатацию, для установления положительной температуры всех узлов насоса.

ВНИМАНИЕ! Размотка кабеля насоса без выдержки в теплом помещении запрещена!

Перед постановкой на хранение насосы очистить от загрязнений, слить воду.

Насосы и шкафы управления должны храниться в закрытых помещениях при отсутствии воздействия кислот, щелочей, бензина, растворителей и т. д.

ВНИМАНИЕ! Предохранить силовые и контрольные кабели насосов от повреждений! Запрещаются тянущие усилия на кабели во избежание появления скрытых дефектов в самих кабелях и в местах их подсоединения с электродвигателем насоса. Концы кабелей насосов должны быть защищены от попадания внутрь влаги.

Хранение в условиях 8ОЖ3 по ГОСТ 15150-69. Условия хранения насоса в упаковке из гофрокартона — 4Ж2 ГОСТ 15150-69. В зимний период температура хранения должна быть не ниже - 30° С. Длительность хранения насоса при низких температурах (- 30° С÷- 40° С) - не более 30суток, (ниже - 40° С) — не более 10суток

ВНИМАНИЕ! Рабочее колесо насоса следует периодически прокручивать от руки, один раз в месяц, для предотвращения «слипания» пар трения уплотнений друг с другом. Прокручивание рабочего колеса является обязательным.

12. ГАРАНТИЯ ИЗГОТОВИТЕЛЯ

- 12.1. Срок гарантии 12 месяцев с даты отгрузки.
- 12.2. Предприятие-изготовитель гарантирует соответствие характеристики насоса показателям, указанным в разделе 2 (стр.8) настоящего паспорта, надежную, безаварийную работу насоса в рабочем интервале характеристики, безвозмездное устранение в кратчайший технически возможный срок дефектов, а также замену вышедших из строя деталей в течение гарантийного срока по причине поломки преждевременного износа при соблюдении потребителем транспортирования, хранения, технического обслуживания монтажа, эксплуатации, указанных в настоящем паспорте;
- 12.3. При проведении гарантийного ремонта течение срока гарантии приостанавливается на время проведения ремонта;
- 12.4. Завод-изготовитель может отказать в гарантийном ремонте в случае:
 - Нарушения гарантийного пломбирования;
 - Наличия механических повреждений, дефектов, вызванных несоблюдением правил эксплуатации, транспортировки и хранения;
 - Самостоятельного ремонта или изменения внутреннего устройства;
 - Изменения, стирания, удаления или неразборчивости серийного номера изделия на бирке;
 - Наличия дефектов, вызванных стихийными бедствиями, пожаром и т.д.
 - Применения изделия не по прямому назначению; Износ торцовых уплотнений не является причиной рекламации.
- 12.5. Претензии принимаются только при наличии оформленного актарекламации (или заявления) с указанием проявлений неисправности.
- 12.6. Транспортировка неисправного изделия осуществляется силами Покупателя.
- 12.7. Изделие, передаваемое для гарантийного ремонта должно быть очищено от загрязнений и полностью укомплектовано.
- 12.8. Приведенные выше гарантийные обязательства не предусматривают ответственности за любые прямые или косвенные убытки, потерю прибыли или другой ущерб.

12.9. За неправильность выбора насоса предприятие-изготовитель ответственности не несет.

ВНИМАНИЕ: Перед запуском изделия в эксплуатацию, внимательно ознакомьтесь с Инструкцией по эксплуатации и другими правилами и нормативными документами, действующими на территории РФ. Нарушение требований этих документов влечет за собой прекращение гарантийных обязательств перед Покупателем.

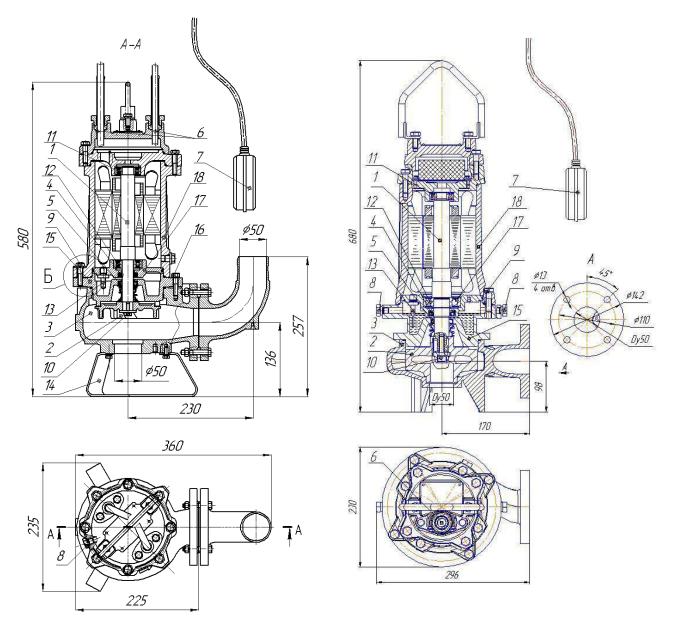


Рис. 16 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш"

 $\Pi \Phi c 50/125 - 1,1/2$

 $\Pi\Phi 2 \ 50/125 - 1,1/2$

 $\Pi\Phi c \ 50/125 - M1,1/2$

 $\Pi\Phi 2 \ 50/125 - M1,1/2$

Рис.17 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПФ2 50/140. – 3/2

1.Электродвигатель; 2. Колесо рабочее; 3. Корпус спиральный; 4. Торцовое уплотнение (манжета); 5. Торцовое уплотнение; 6. Встроенный кабель (-ли); 7. Поплавковый выключатель; 8. Пробка масляной камеры; 9. Метизы крепления корпуса камеры и стакана подшипника к корпусу электродвигателя; 10. Метизы крепления колеса рабочего (с шайбой); 11. Подшипник; 12. Подшипник (-ки); 13. Датчик влажности; 14. Подставка; 15. Корпус камеры; 16. Метизы крепления корпуса камеры (корпуса электродвигателя для насосов «Иртыш» ПФ1 65/160 – 3/2; ПФс 65/160 – 3/2) к корпусу спиральному (проставке); 17. Стакан подшипника; 18. Корпус электродвигателя; 19. Метизы крепления крышки камеры к корпусу камеры; 20. Крышка камеры; 21. Метизы крепления проставки к корпусу спиральному; 22. Проставка.

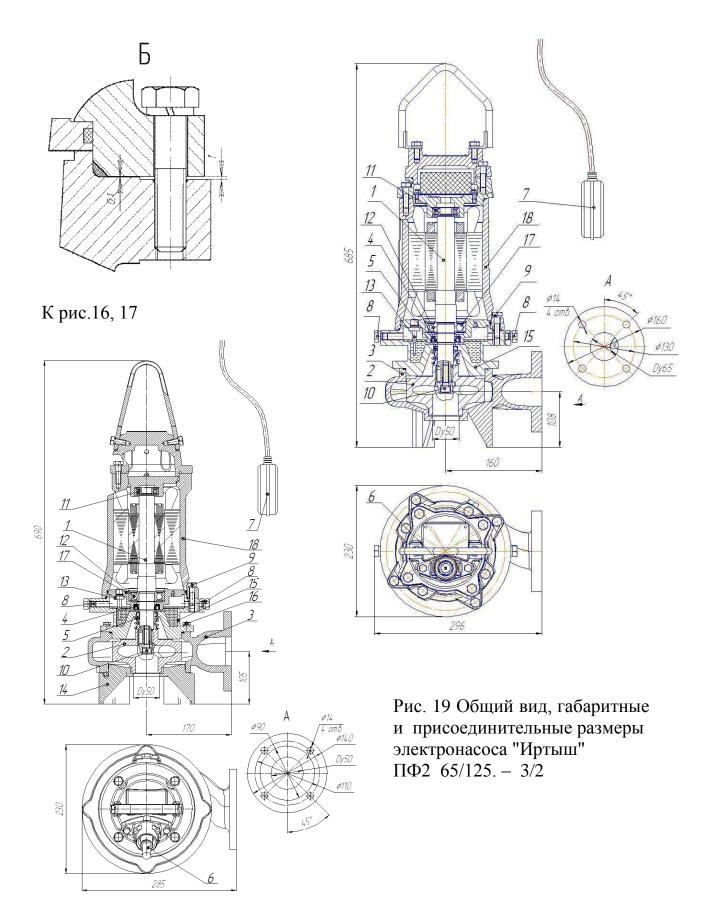


Рис. 18 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПФ2 50/150. — 3/2

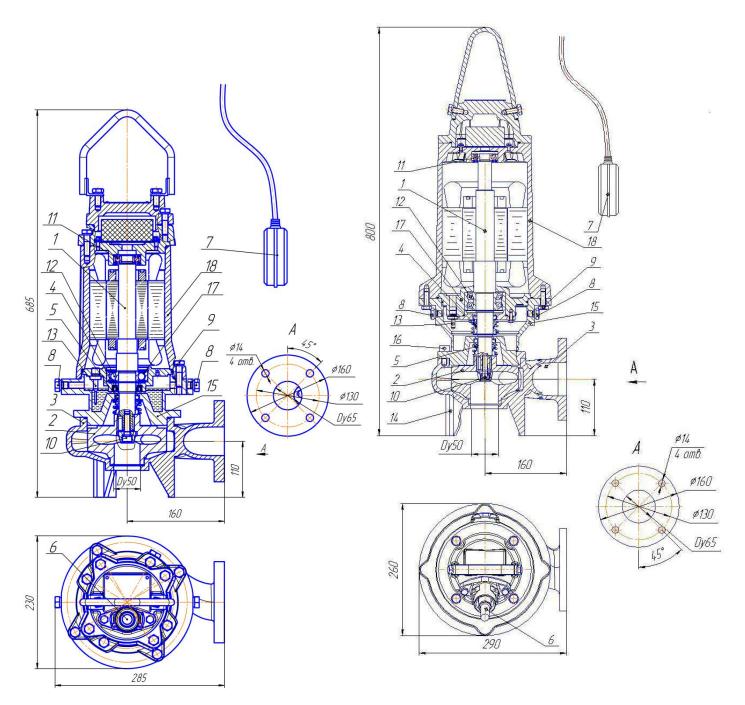
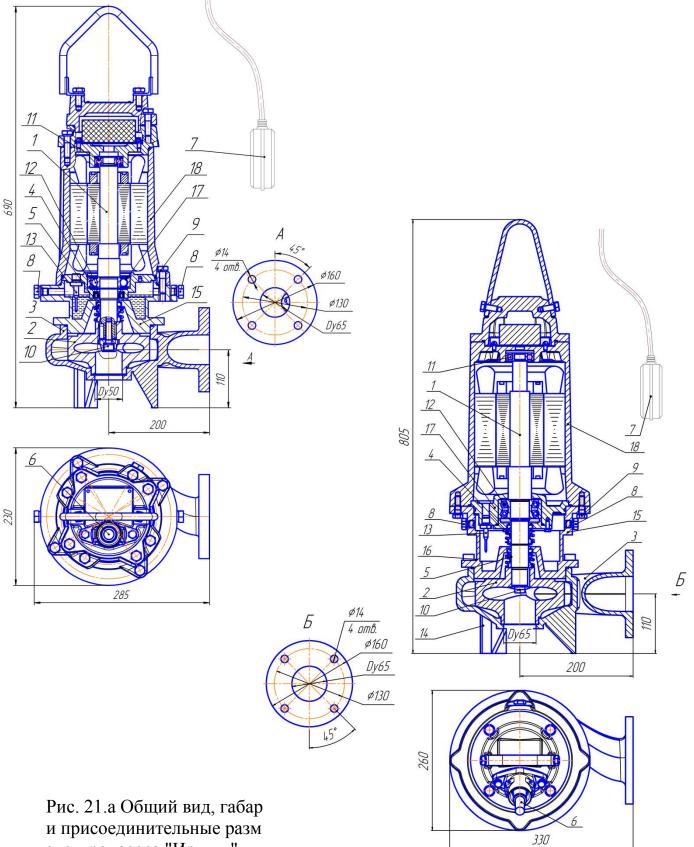



Рис. 20.а Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 65/135.-3/2$

Рис. 20.б Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2$ 65/135. — 4/2

электронасоса "Иртыш" ПФ2 65/155 – 3/2

Рис. 21.б Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2 65/155 - 4/2;$ $\Pi\Phi 2\ 65/155 - 5,5/2$

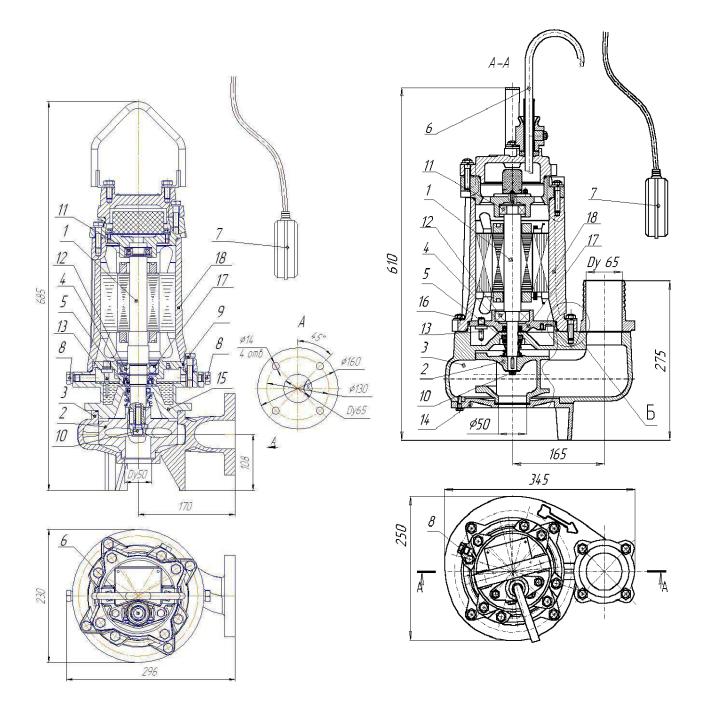


Рис. 22 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПФ2 65/130. – 3/2

Рис. 23 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш"

 $\Pi\Phi 1 65/160 - 3/2;$

 $\Pi\Phi c 65/160 - 3/2;$

 $\Pi\Phi 2 65/160 - 3/2;$

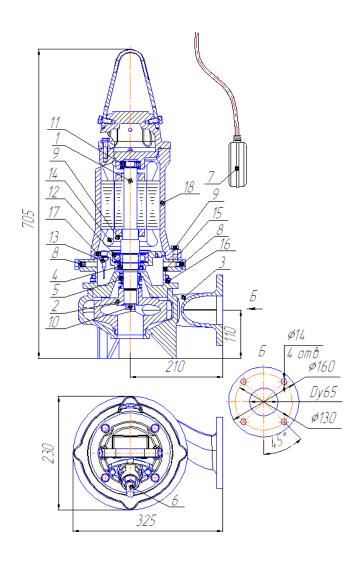


Рис. 24.а Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2$ 65/165 — 3/2;

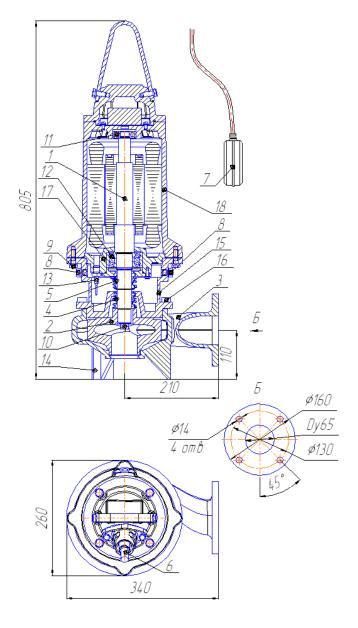


Рис. 24.б Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 65/165-4/2;$ $\Pi\Phi 2\ 65/165-5,5/2;$

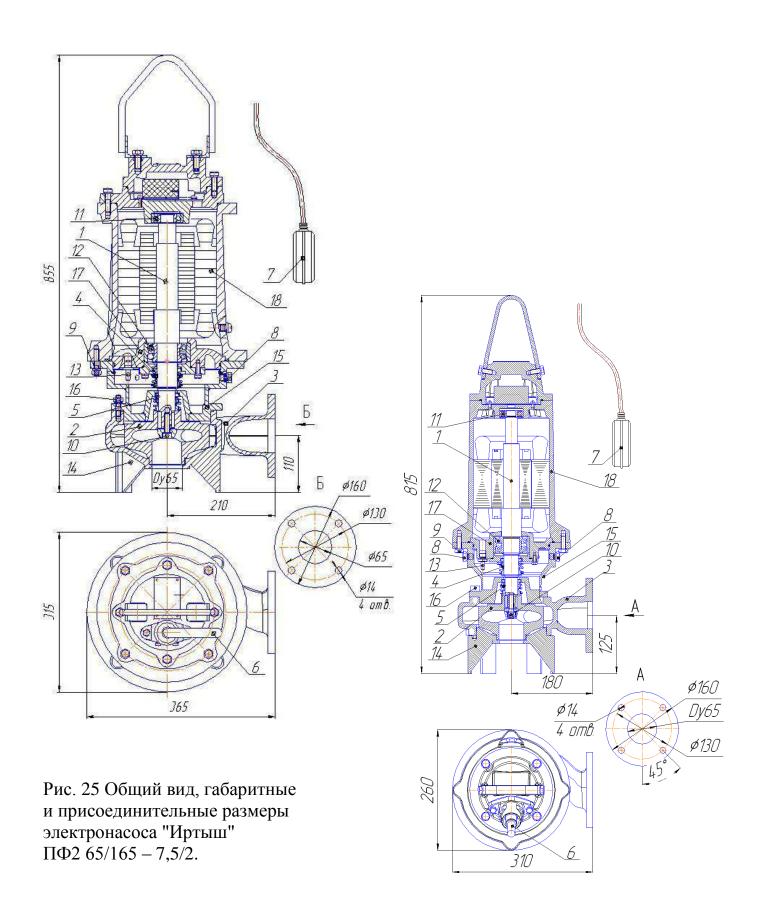


Рис. 26 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2$ 65/145. — 4/2

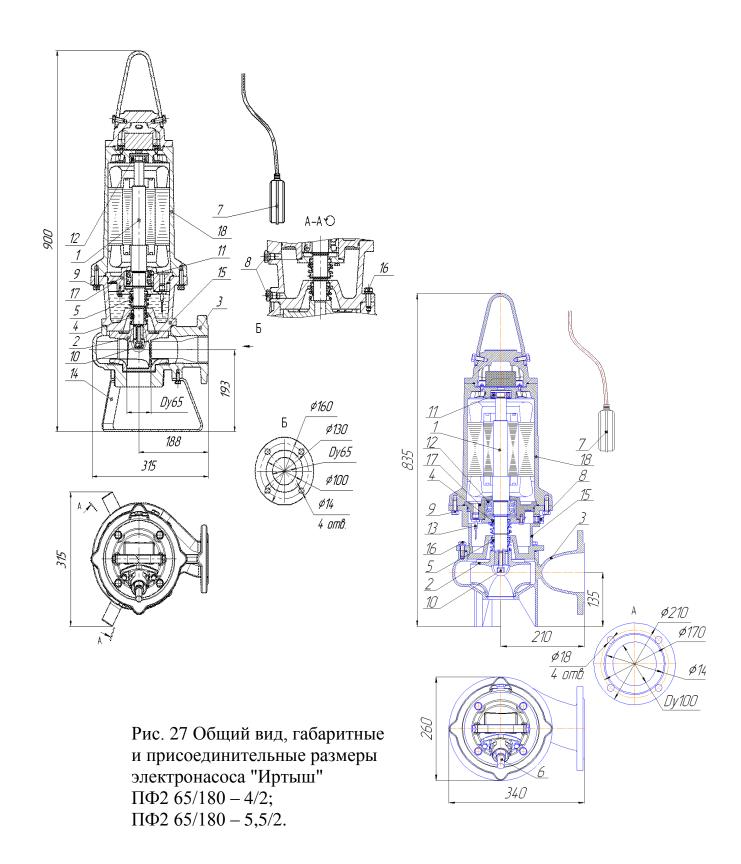


Рис. 28 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 100/150-5,5/2;$

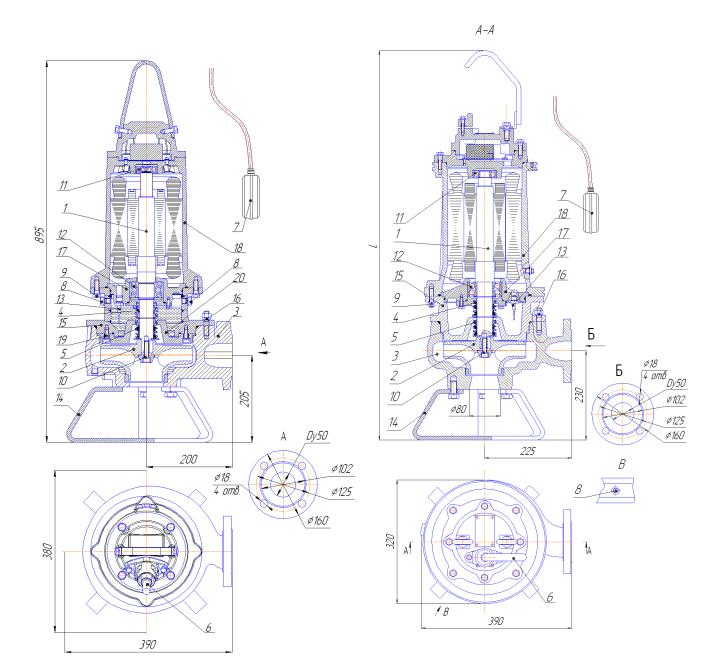


Рис. 29 Общий вид, габаритни и присоединительные размери электронасоса "Иртыш" $\Pi\Phi 2 \ 50/200 - 5,5/2;$

Рис. 30 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 50/200\ -7,5/2;$ $\Pi\Phi 2\ 50/200\ -11/2.$

Обозначение насоса «Иртыш»	L
ПФ2 50/200 -7,5/2	1005
ПФ2 50/200 —11/2	1015

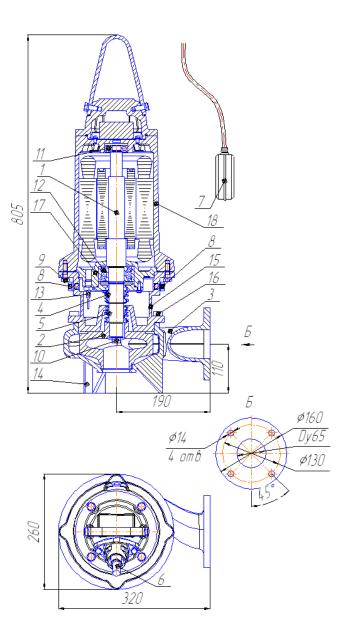


Рис. 31 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 65/150-5,5/2$

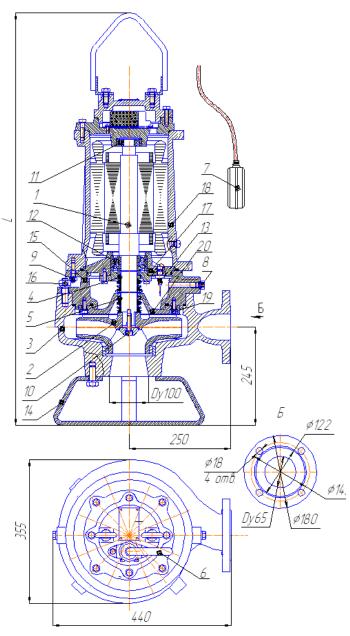


Рис. 32 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 65/250-5,5/4;$ $\Pi\Phi 2\ 65/250-7,5/4$

Обозначение насоса «Иртыш»	L
ПФ2 65/250 — 5,5/4	985
ПФ2 65/250 — 7,5/4	1020

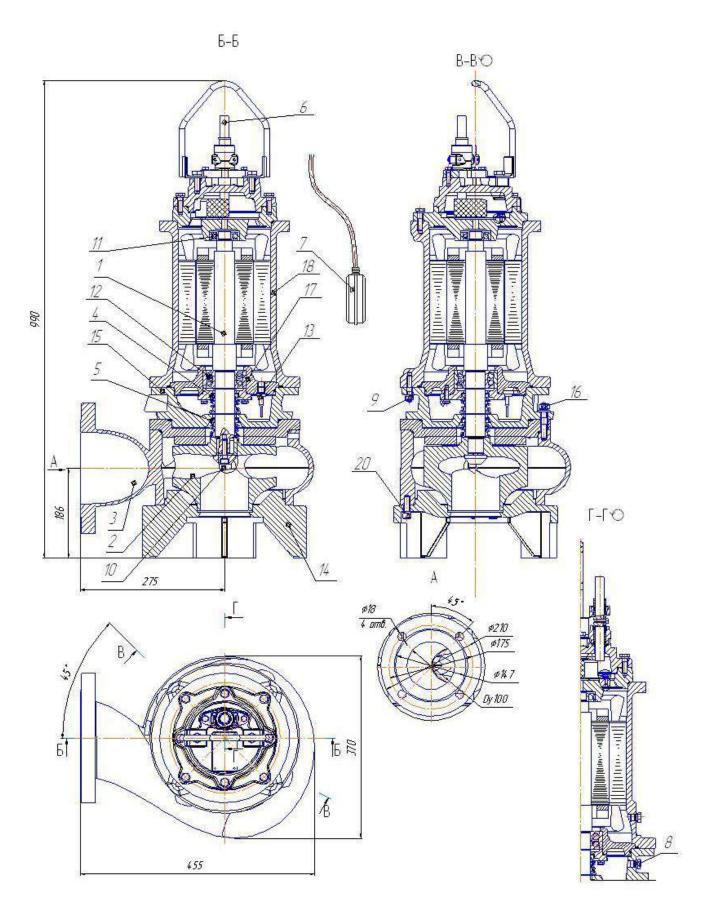


Рис. 33 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 100/200-5,5/4$.

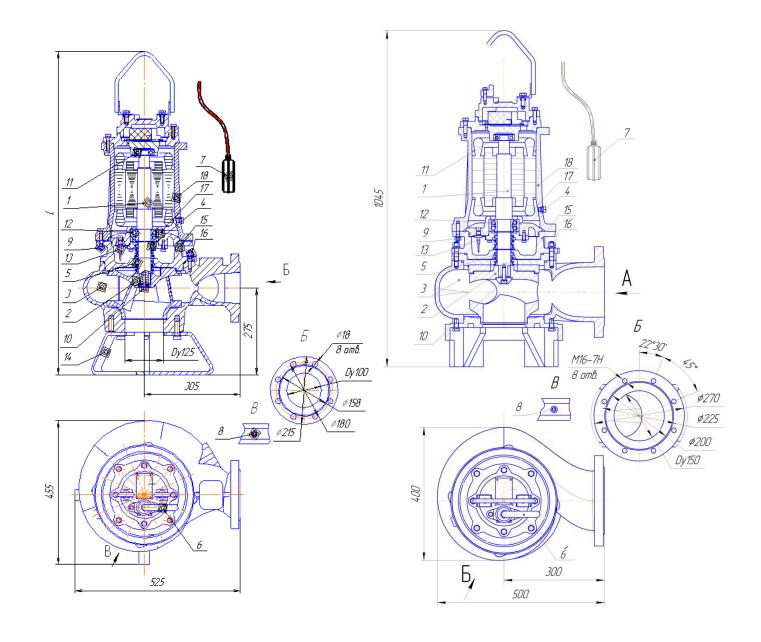


Рис. 34 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 1\ 100/240-5,5/4;$ $\Pi\Phi 1\ 100/240-7,5/4.$

Рис. 35 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 150/205-7,5/4.$

Обозначение насоса «Иртыш»	L
ПФ1 100/240 – 5,5/4	1025
ПФ1 100/240 – 7,5/4	1060

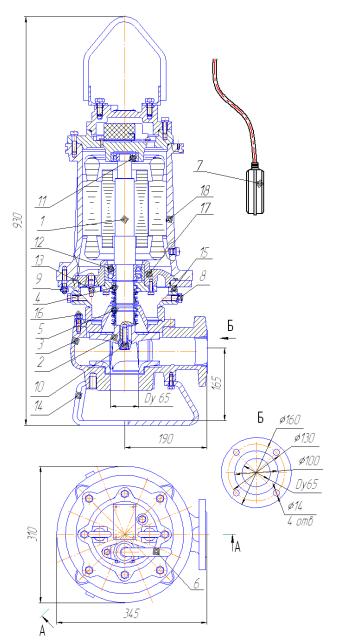
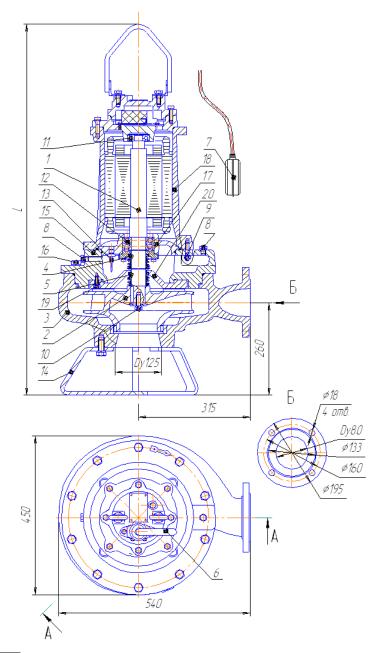
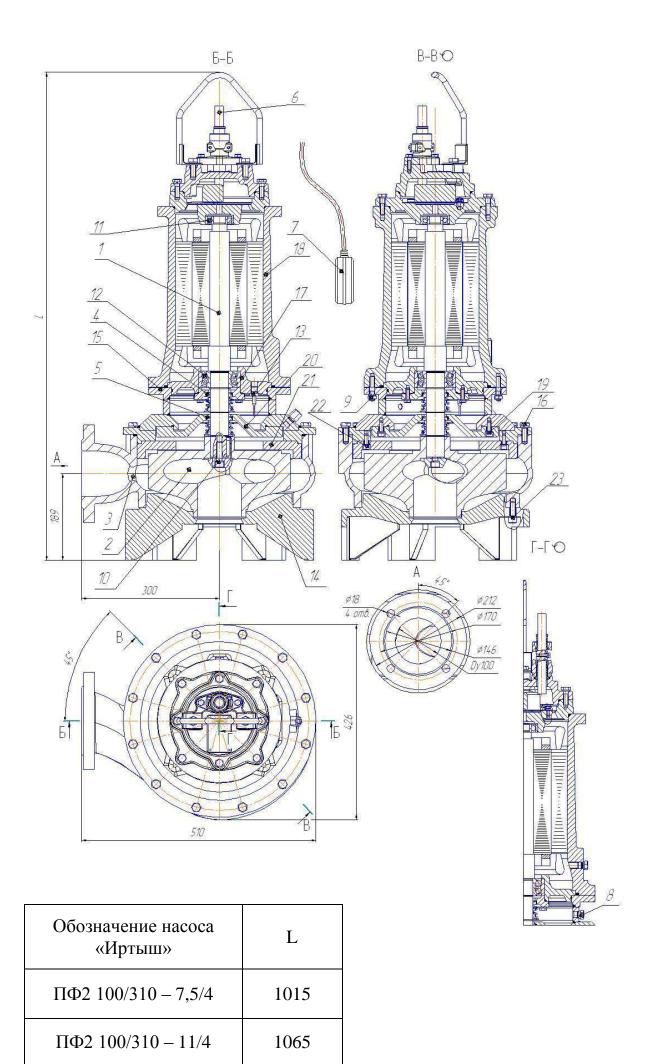




Рис. 36 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2 65/180 - 7,5/2$

Рис. 37 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 80/315-7,5/4;$ $\Pi\Phi 2\ 80/315-11/4$

Обозначение насоса «Иртыш»	L
ПФ2 80/315 – 7,5/4	1045
$\Pi\Phi 2 \ 80/315 - 11/4$	1095

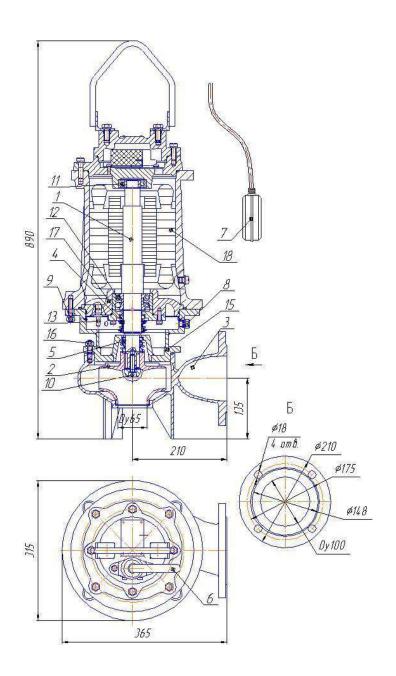


Рис. 39 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 100/150-7,5/2.$

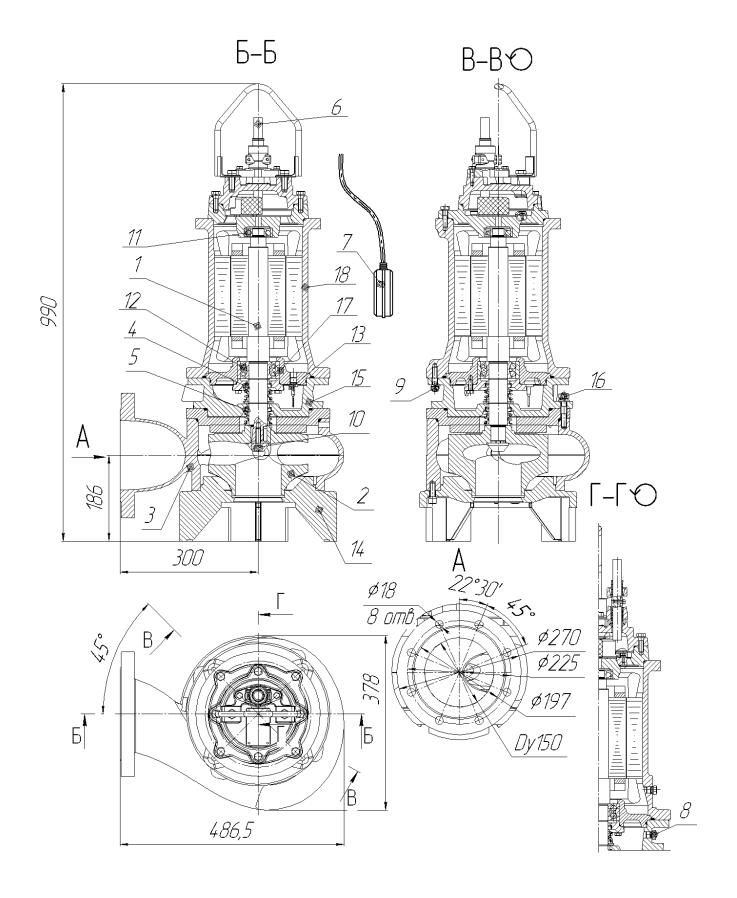


Рис. 40 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 150/215-7,5/4$.

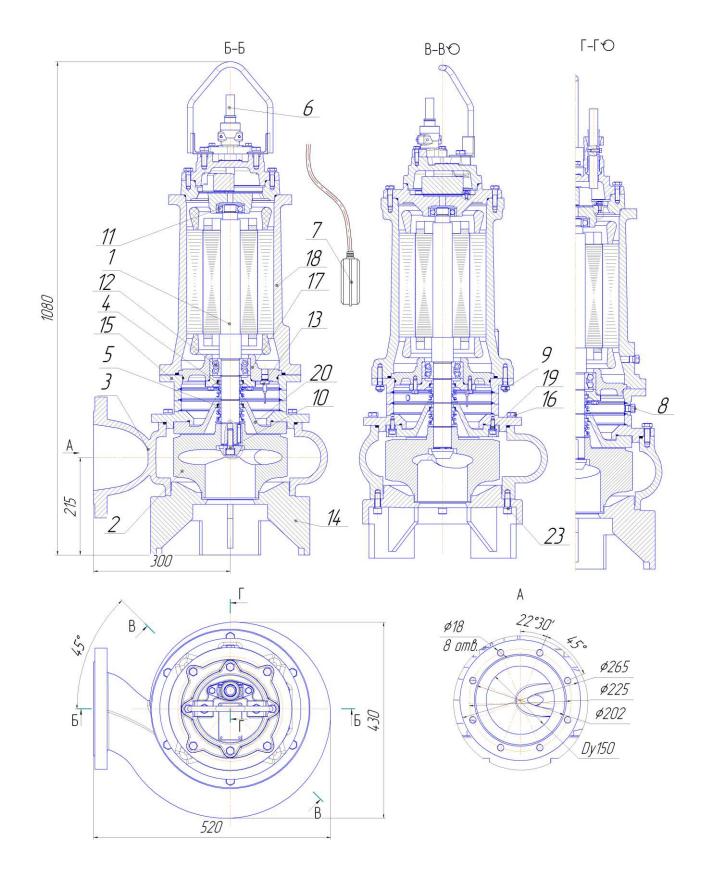


Рис. 41 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПФ2 150/255 – 11/4.

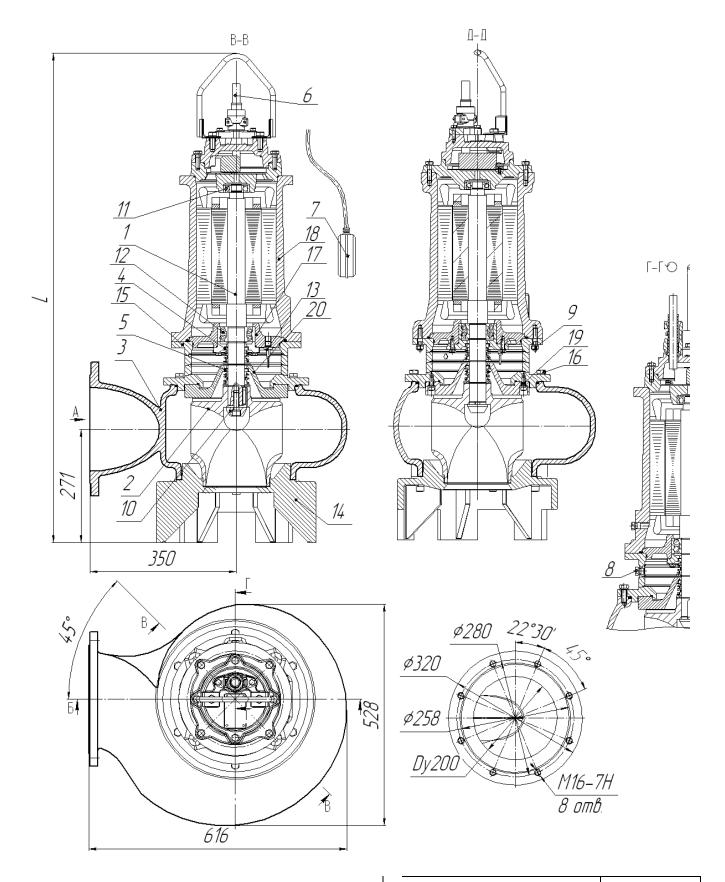


Рис. 42 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 200/220-7,5/4;$ $\Pi\Phi 2\ 200/220-11/4.$

Обозначение насоса «Иртыш»	L
ПФ2 $200/220 - 7,5/4$	1120
$\Pi\Phi 2\ 200/220 - 11/4$	1170

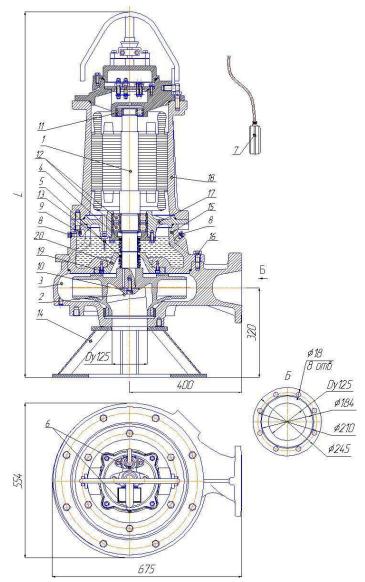


Рис. 43 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 125/400-11/6;$ $\Pi\Phi 2\ 125/400-15/6;$ $\Pi\Phi 2\ 125/400-18,5/6.$

Обозначение насоса «Иртыш»	L
ПФ2 125/400 — 11/6	1265
ПФ2 125/400 — 15/6	1305
$\Pi\Phi 2\ 125/400 - 18,5/6$	1395

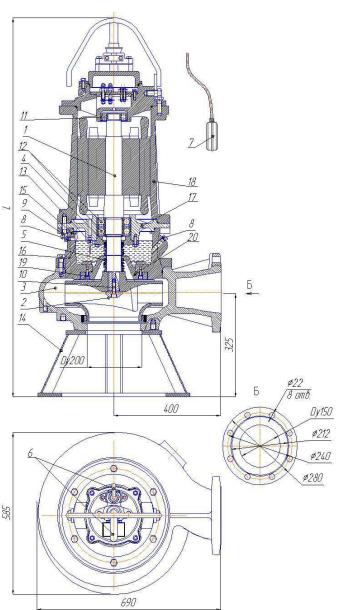


Рис. 44 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПФ2 150/315–11/6; ПФ2 150/315–15/6; ПФ2 150/315–18,5/6.

Обозначение насоса «Иртыш»	L
ПФ2 150/315 — 11/6	1330
ПФ2 150/315 — 15/6	1370
ПФ2 150/315 $-$ 18,5/6	1460

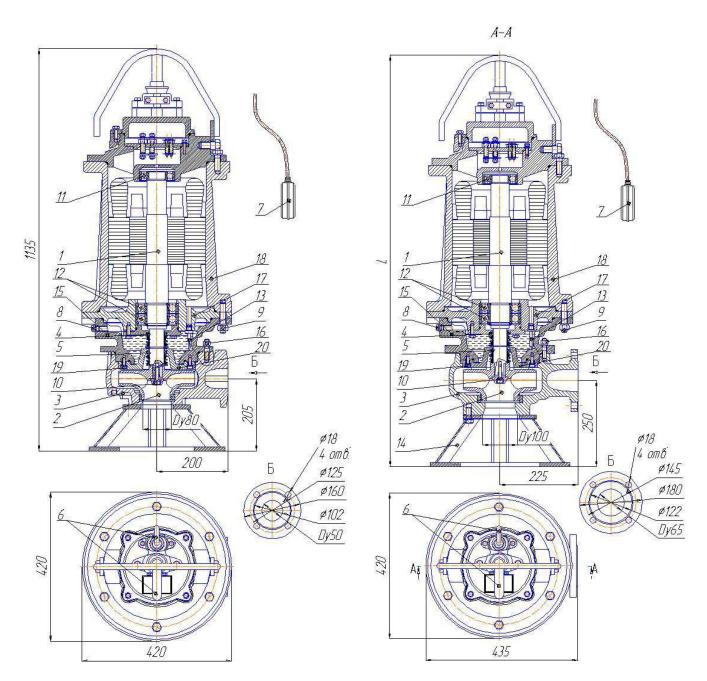


Рис. 45 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2 \ 50/200 - 15/2;$ $\Pi\Phi 2 \ 50/200 - 18,5/2.$

Рис. 46 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 65/200-15/2;$ $\Pi\Phi 2\ 65/200-18,5/2;$

 $\Pi\Phi 2 65/200 - 22/2;$

ПФ2	65/200	-30/2.

Обозначение насоса	1.
«Иртыш»	L
$\Pi\Phi 2\ 65/200 - 15/2$	
$\Pi\Phi 2\ 65/200 - 18,5/2$	1090
$\Pi\Phi 2\ 65/200 - 22/2$	1070
$\Pi\Phi 2 65/200 - 30/2$	1280

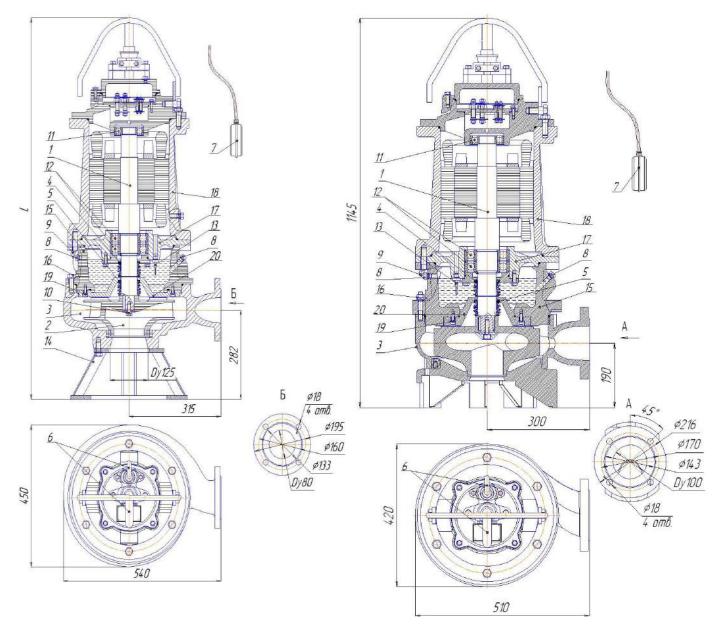


Рис. 47 Общий вид, габаритны и присоединительные размерь электронасоса "Иртыш" $\Pi\Phi 2\ 80/315-15/4;$ $\Pi\Phi 2\ 80/315-18,5/4.$

Рис. 58 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 100/310-15/4$

Обозначение насоса «Иртыш»	L
ПФ2 80/315 — 15/4	1205
ΠΦ2 80/315 - 18,5/4	1245

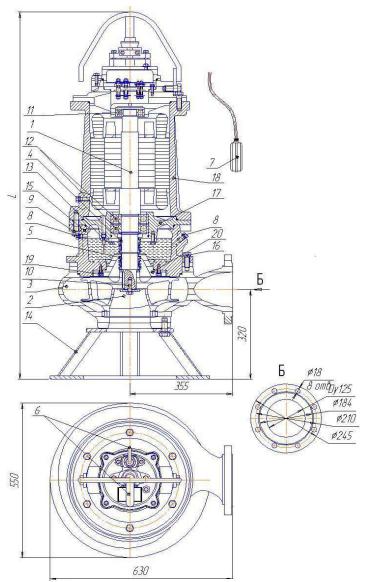


Рис. 49 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш"

 $\Pi\Phi 2 \ 125/315 - \ 11/6;$

 $\Pi\Phi 2 \ 125/315 - \ 15/4;$

 $\Pi\Phi 2\ 125/315 - 18,5/4;$

 $\Pi\Phi 2\ 125/315 - 22/4;$

 $\Pi\Phi C \ 125/315 - 22/4;$

 $\Pi\Phi 2 \ 125/315 - \ 30/4.$

Обозначение насоса «Иртыш»	L
$\Pi\Phi 2 \ 125/315 - 11/6$	1270
ПФ2 125/315 — 15/4	
$\Pi\Phi 2\ 125/315 - 18,5/4$	1310
ПФ2 125/315 — 22/4	
ПФС 125/315 — 22/4	
$\Pi\Phi 2 \ 125/315 - 30/4$	1400

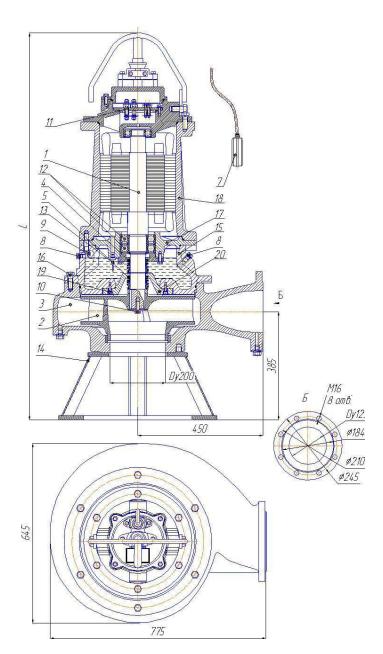


Рис. 50 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 3\ 150/400-15/6;$ $\Pi\Phi 3\ 150/400-18,5/6$

Обозначение насоса «Иртыш»	L
ПФЗ 150/400 — 15/6	1385
ПФЗ 150/400 — 18,5/6	1475

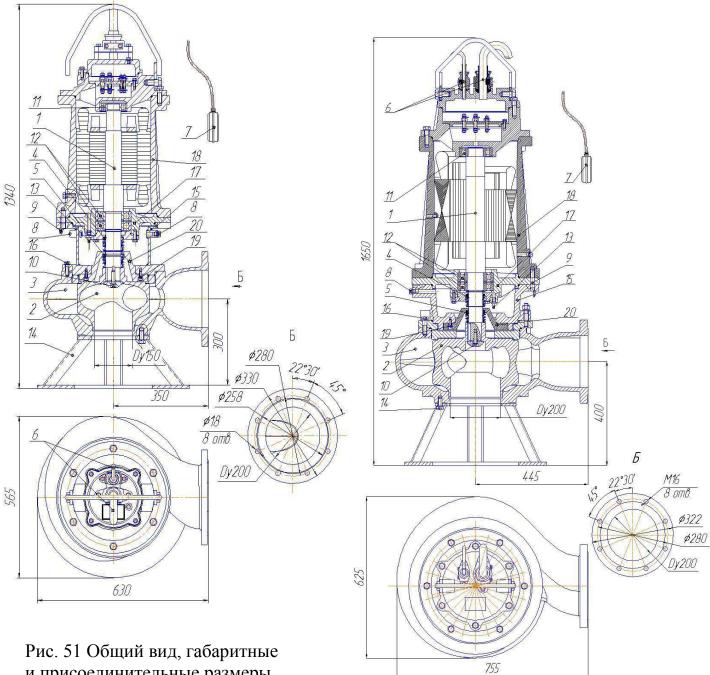


Рис. 51 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 200/265 - 15/4$; $\Pi\Phi 2\ 200/265 - 18,5/4$.

Рис. 52 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 200/360 - 18,5/6;$ $\Pi\Phi 2\ 200/360 - 22/6.$

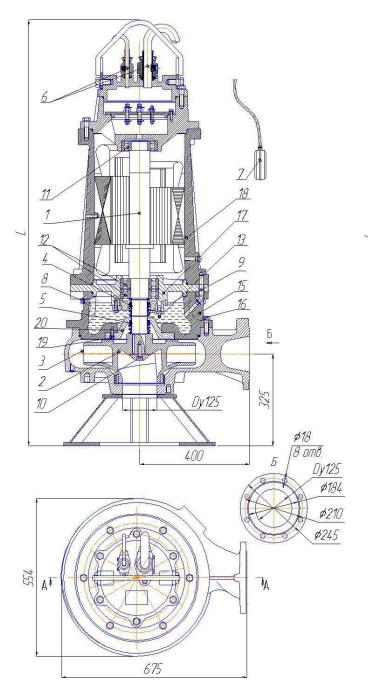


Рис. 53 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 125/400 - 22/6;$ $\Pi\Phi 2\ 125/400 - 37/4;$ $\Pi\Phi 2\ 125/400 - 45/4;$

Обозначение насоса «Иртыш»	L
ПФ2 125/400 — 22/6	
ПФ2 125/400 — 37/4	1495
ПФ2 125/400 — 45/4	
$\Pi\Phi 2\ 125/400 - 55/4$	1550

 $\Pi\Phi 2 \ 125/400 - 55/4$.

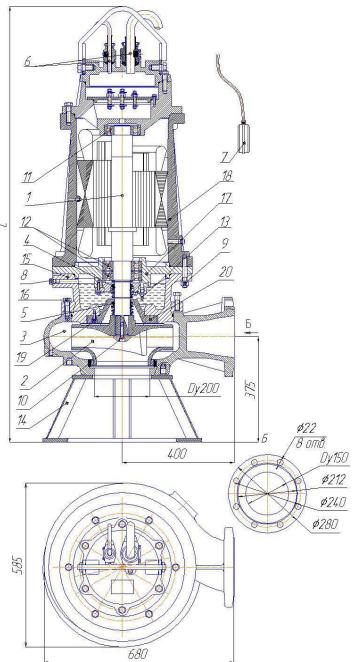


Рис. 54 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2 \ 150/315 - 22/6;$

 $\Pi\Phi 2\ 150/315 - 37/4;$

 $\Pi\Phi 2\ 150/315 - 45/4;$

 $\Pi\Phi 2\ 150/315 - 55/4$.

Обозначение насоса «Иртыш»	L
ПФ2 150/315 — 22/6	
ПФ2 150/315 — 37/4	1555
ПФ2 150/315 — 45/4	
$\Pi\Phi 2\ 150/315 - 55/4$	1615

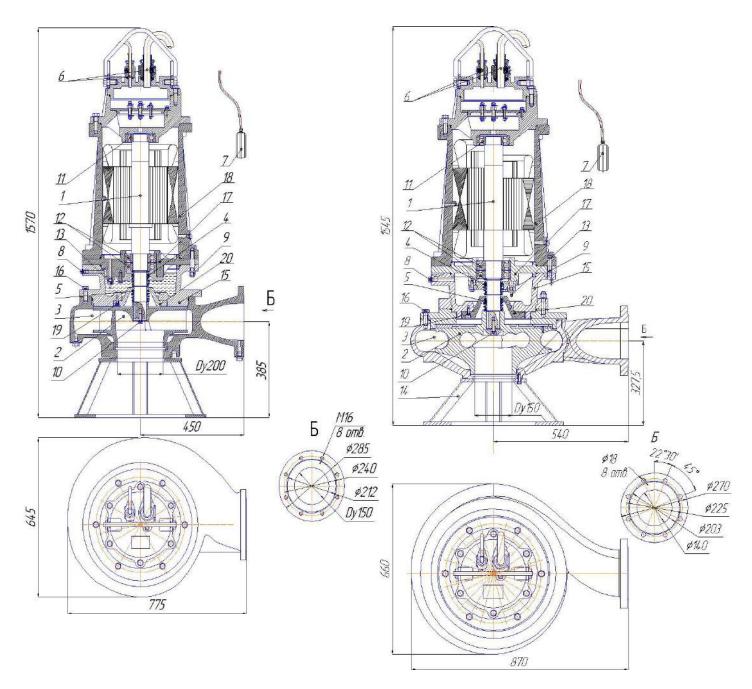


Рис. 55 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 3 150/400 - 22/6$; $\Pi\Phi 3 150/400 - 30/6$.

Рис. 56 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2 150/470 - 22/6$; $\Pi\Phi 2 150/470 - 30/6$.

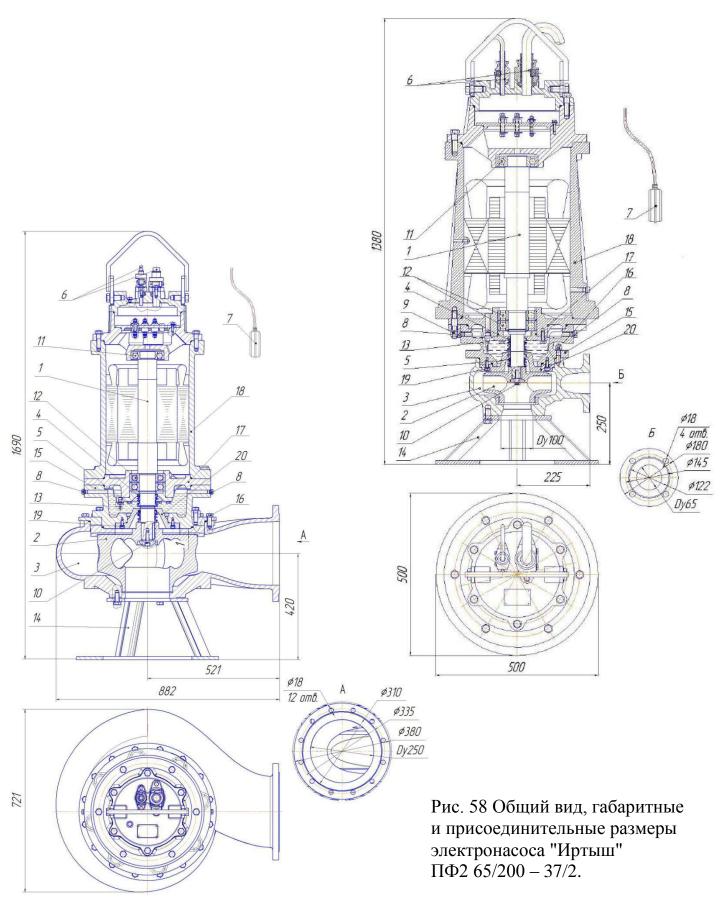


Рис. 57 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" $\Pi\Phi 2$ 250/400 — 22/6; $\Pi\Phi 2$ 250/400 — 30/6.

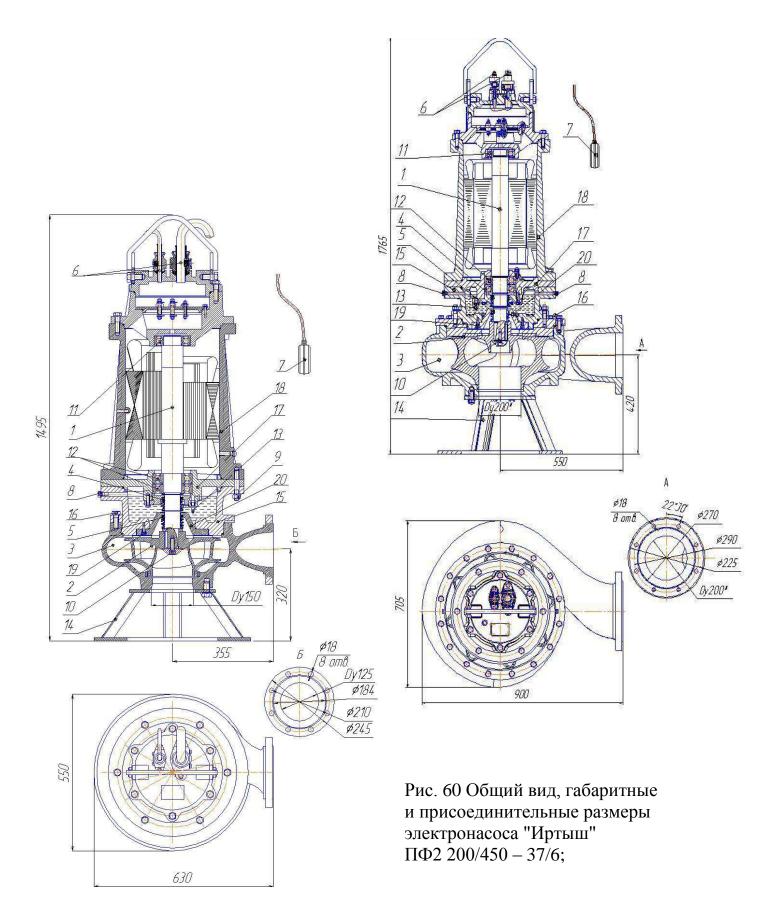


Рис. 59 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПФ2 125/315 – 37/4.

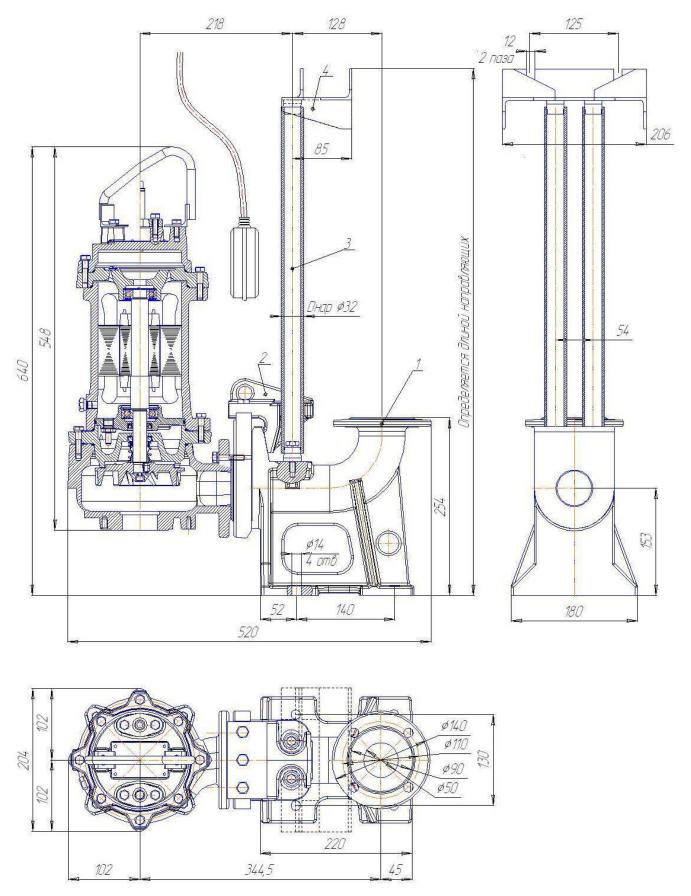


Рис. 61 Общий вид и габаритные размеры электронасоса "Иртыш" П Φ c 50/125 — 1,1/2 — 106; П Φ c 50/125 — M1,1/2 — 106; П Φ 2 50/125 — M1,1/2 — 106 с опускным устройством.

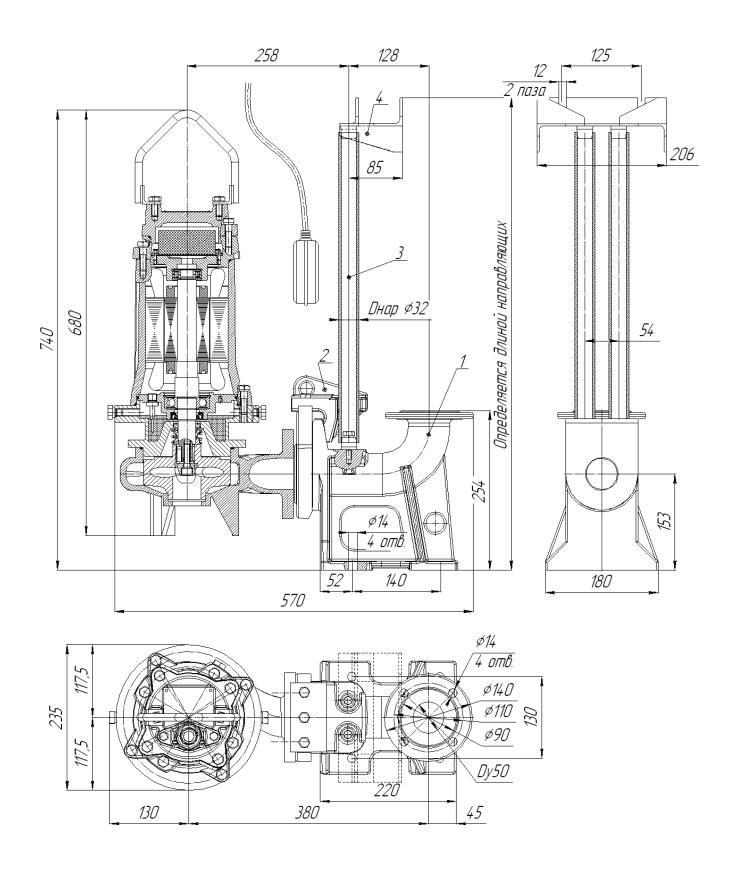


Рис. 62 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2~50/140-3/2-106$ с опускным устройством

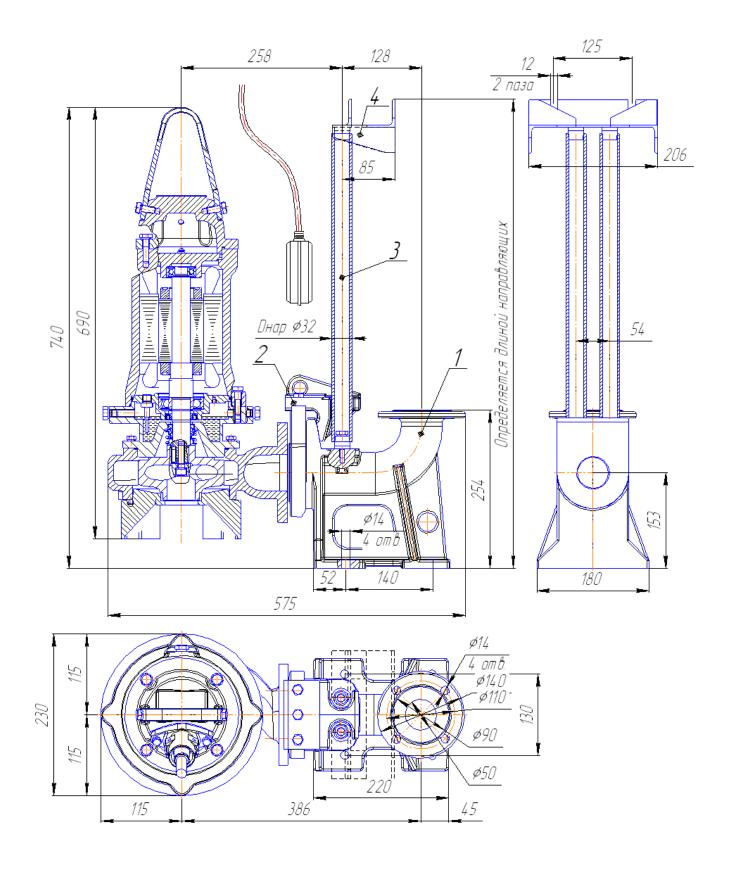


Рис. 63 Общий вид и габаритные размеры электронасоса "Иртыш" П Φ 2 50/150 — 3/2 -106 с опускным устройством

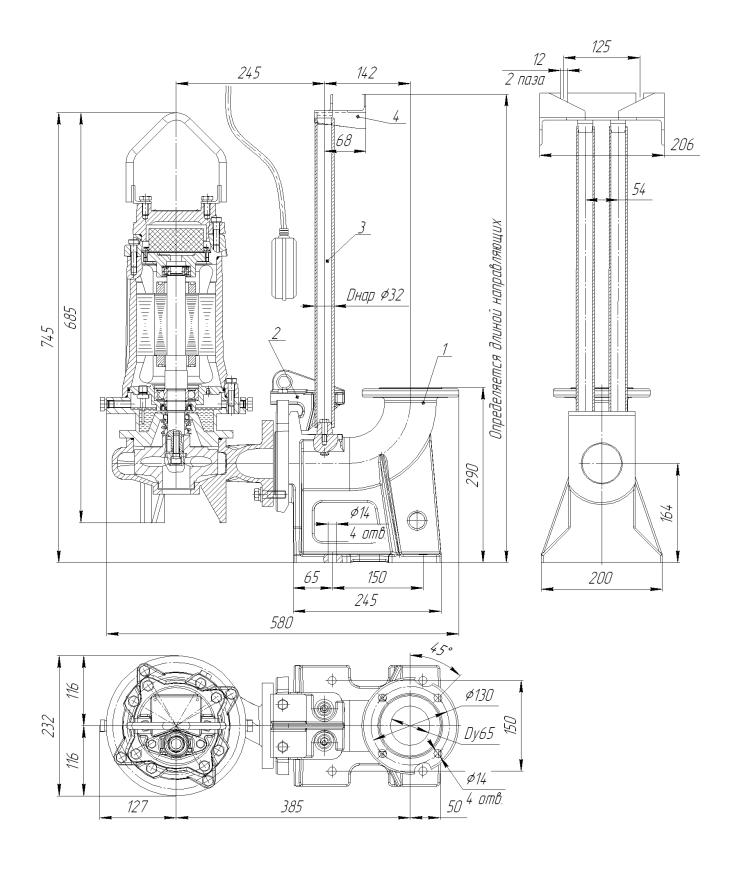


Рис. 64 Общий вид и габаритные размеры электронасоса "Иртыш" П Φ 2 65/125 — 3/2 — 106 с опускным устройством

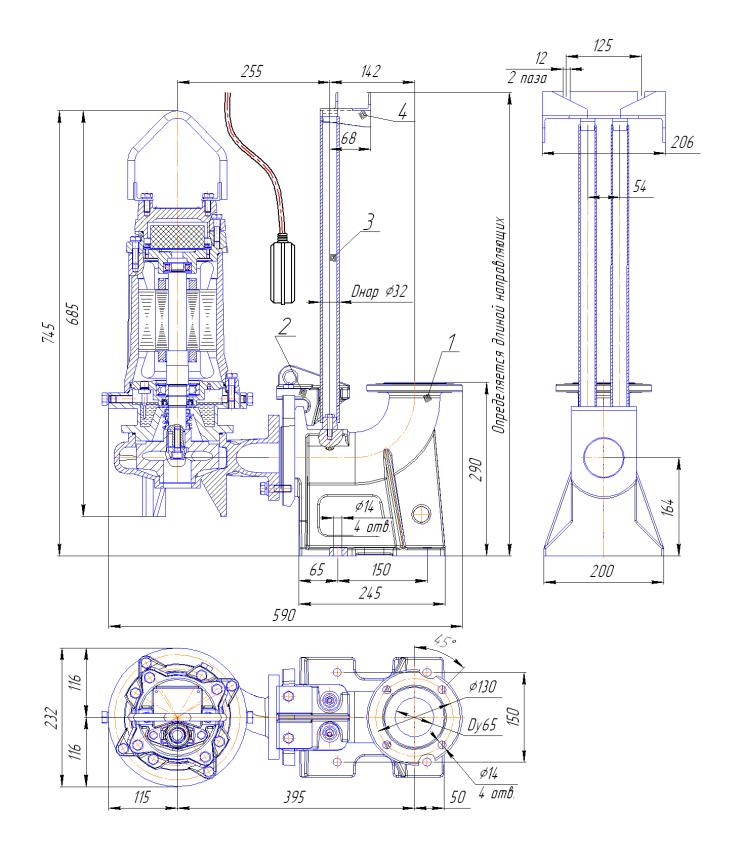


Рис. 65 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ2 65/130-3/2-106 с опускным устройством

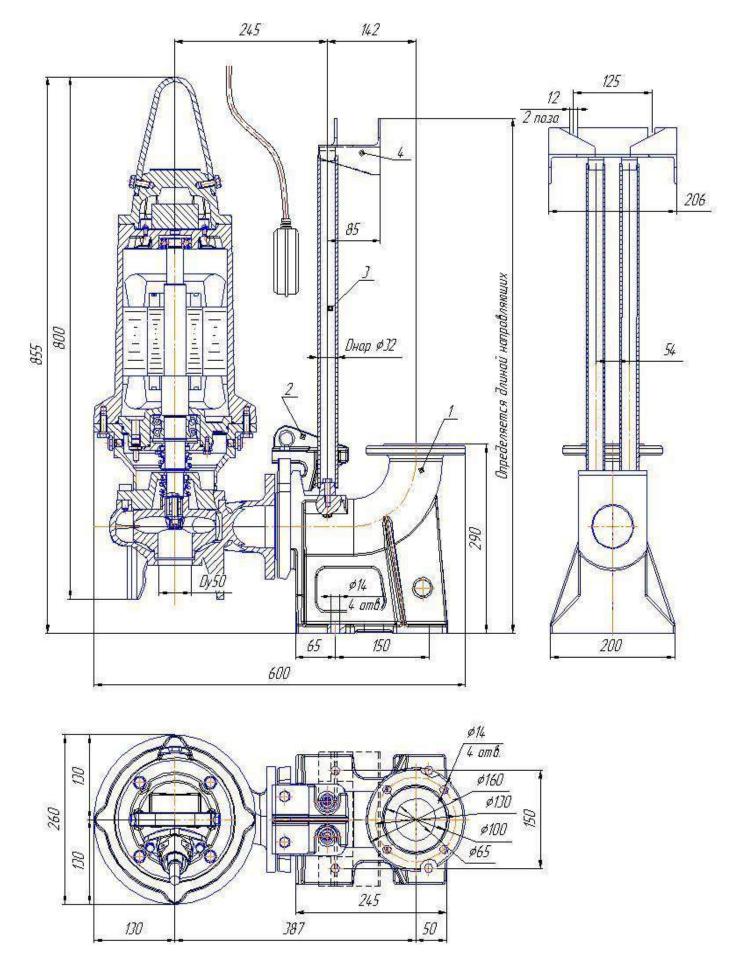


Рис. 66 Общий вид и габаритные размеры электронасоса "Иртыш" П Φ 2 65/135 - 4/2 - 106 с опускным устройством

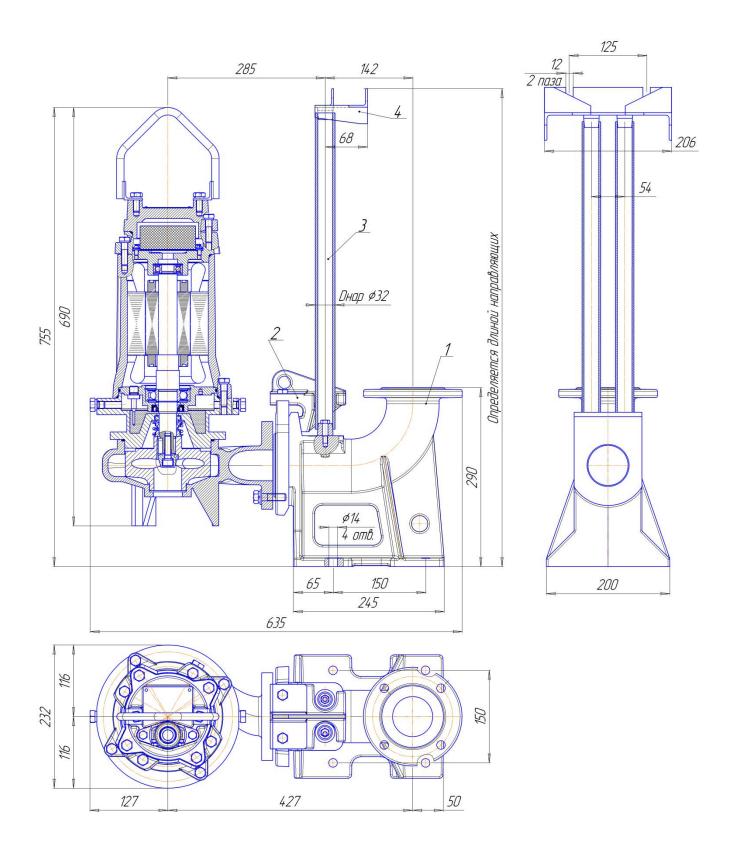


Рис. 67 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2~65/155-~3/2~-106$ с опускным устройством

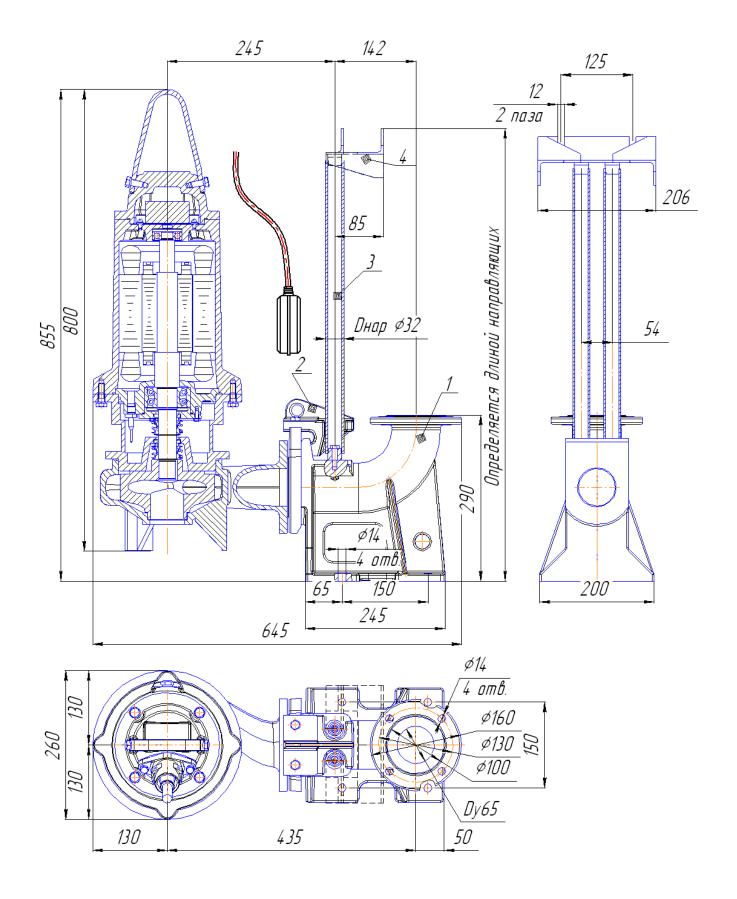


Рис. 68 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ2 65/155 — 4/2 — 106; ПФ2 65/155 — 5,5/2 — 106 с опускным устройством

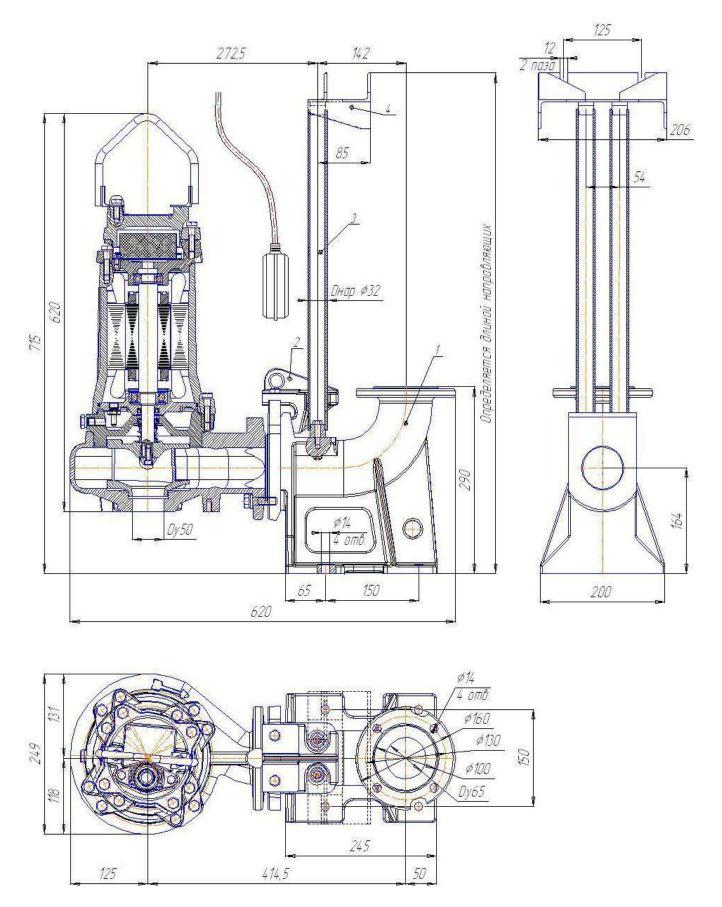


Рис. 69 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ1 65/160-3/2-106; ПФС 65/160-3/2-106 с опускным устройством

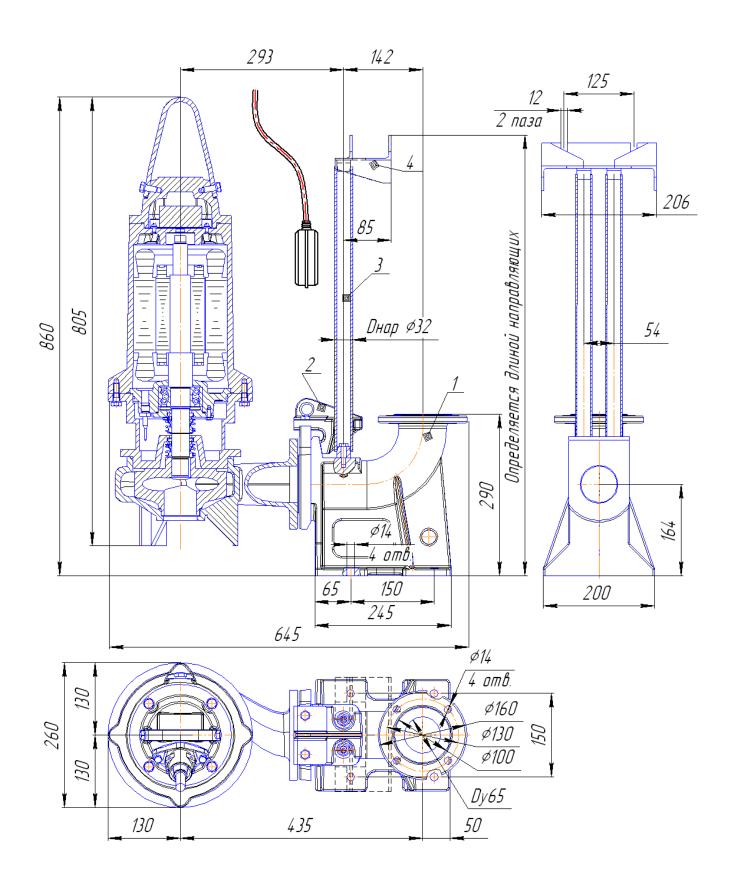


Рис. 70 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ2 65/165 -4/2-106; ПФ2 65/165 -5,5/2-106 с опускным устройством

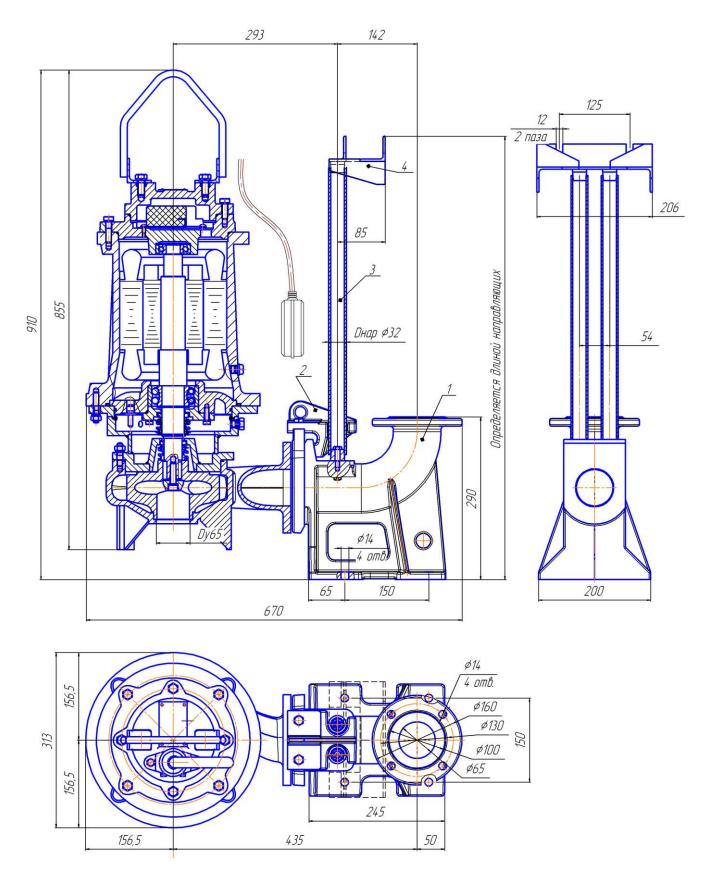


Рис. 71 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ2 65/165 - 7,5/2 - 106 с опускным устройством

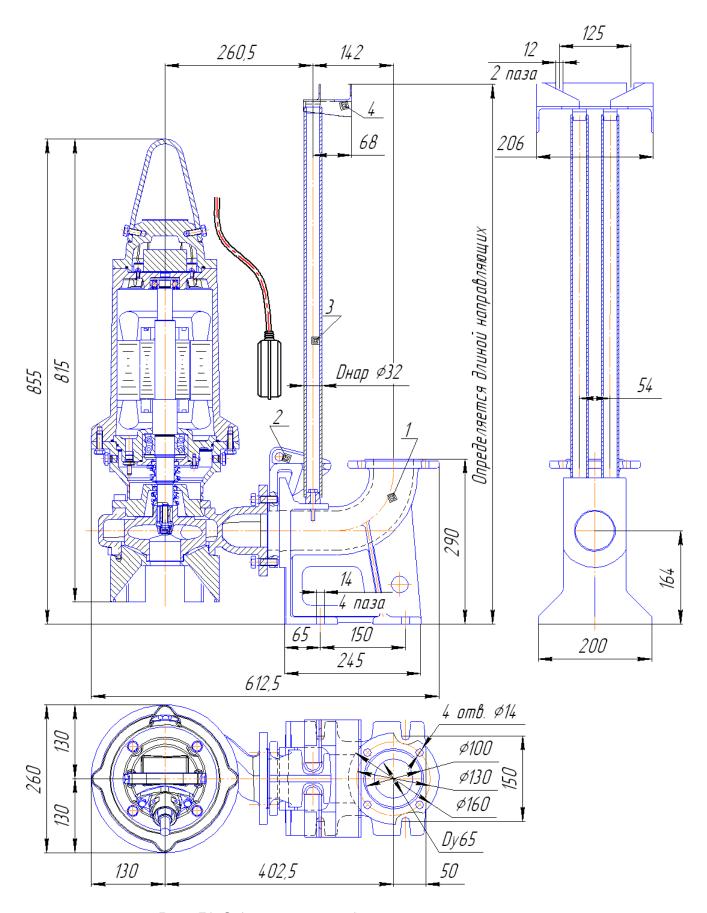


Рис. 72 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2$ 65/145 — 4/2 — 106 с опускным устройством

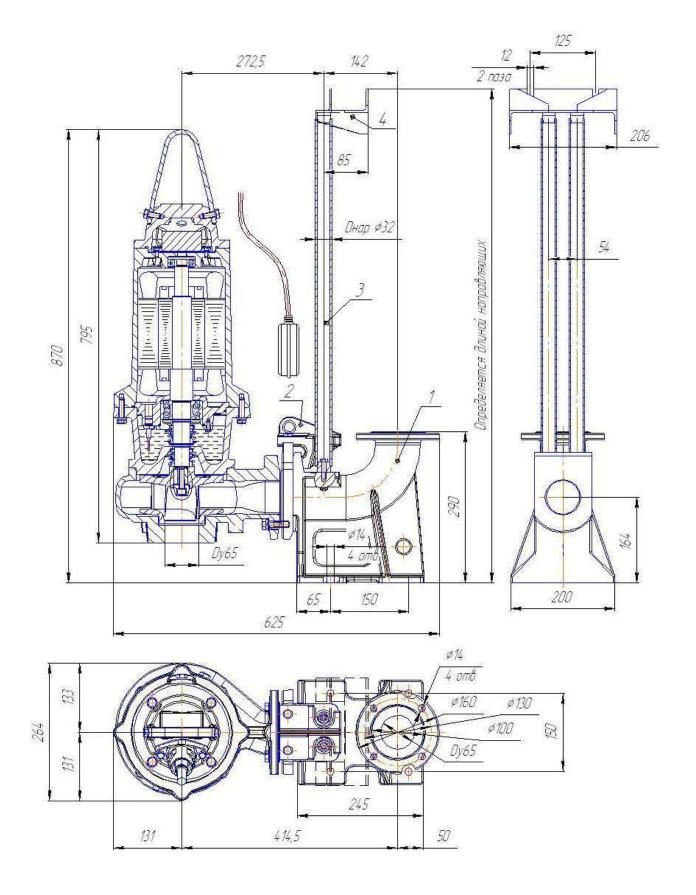


Рис. 73 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ2 65/180 — 4/2— 106; ПФ2 65/180 — 5,5/2 — 106 с опускным устройством

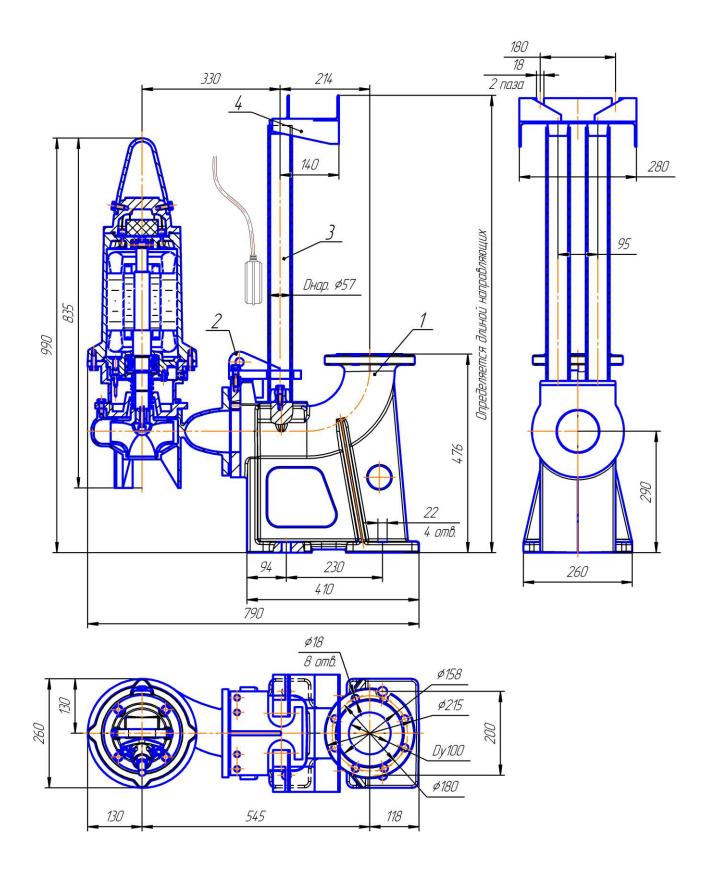


Рис. 74 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 100/150-5,5/2-106;$ с опускным устройством

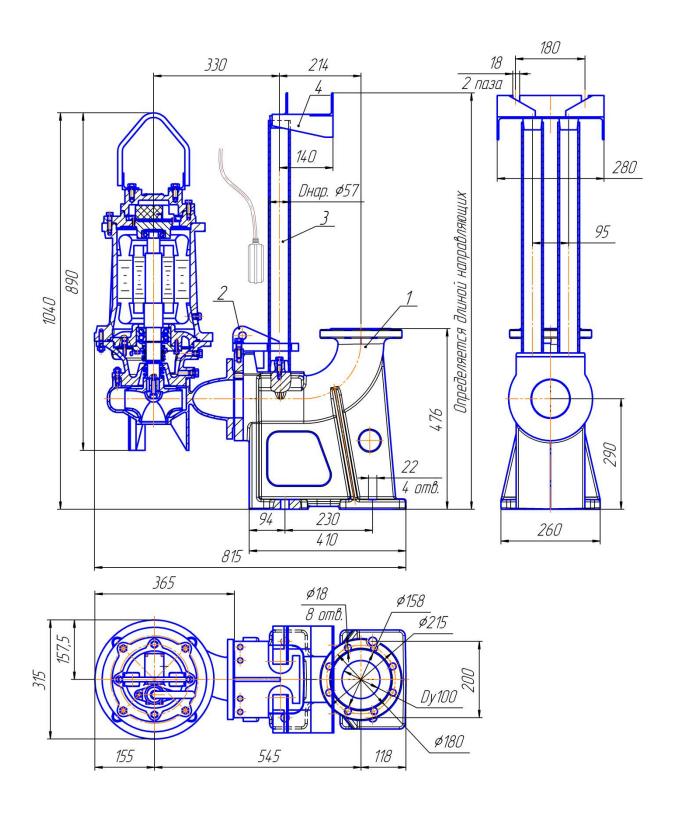


Рис. 75 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ2 100/150-7,5/2-106 с опускным устройством

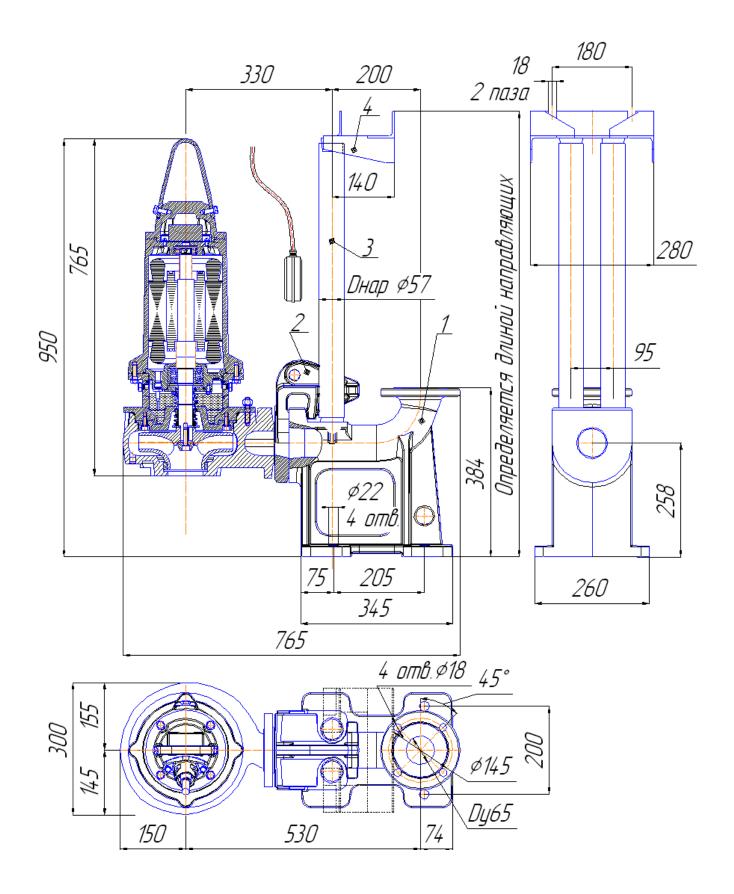


Рис. 76 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 50/200-5,5/2-106$ с опускным устройством.

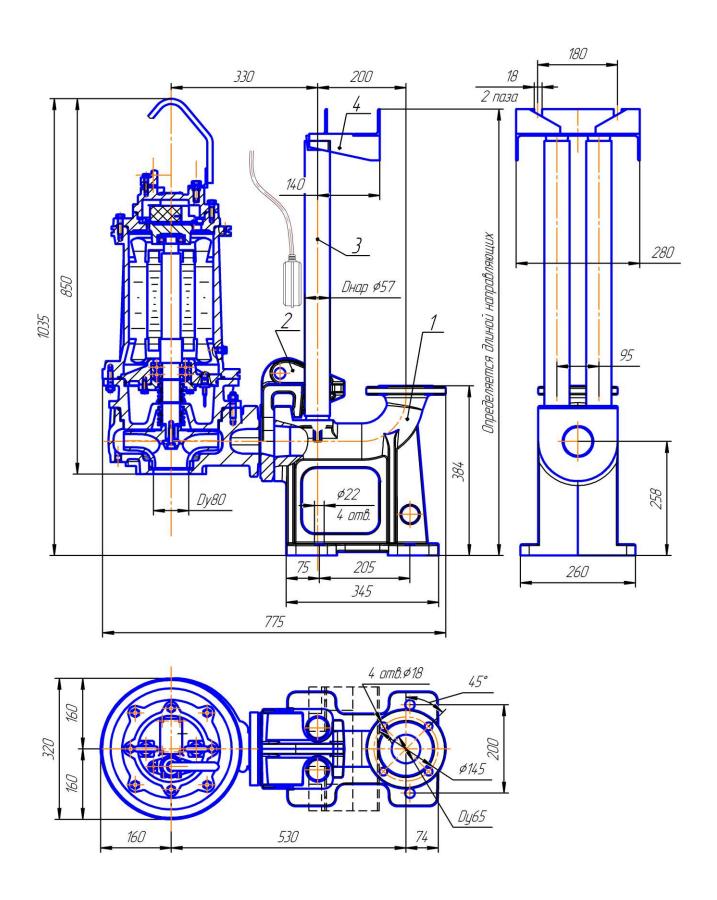


Рис. 77 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2$ 50/200 –7,5/2– 106; $\Pi\Phi 2$ 50/200 – 11/2 – 106 с опускным устройством.

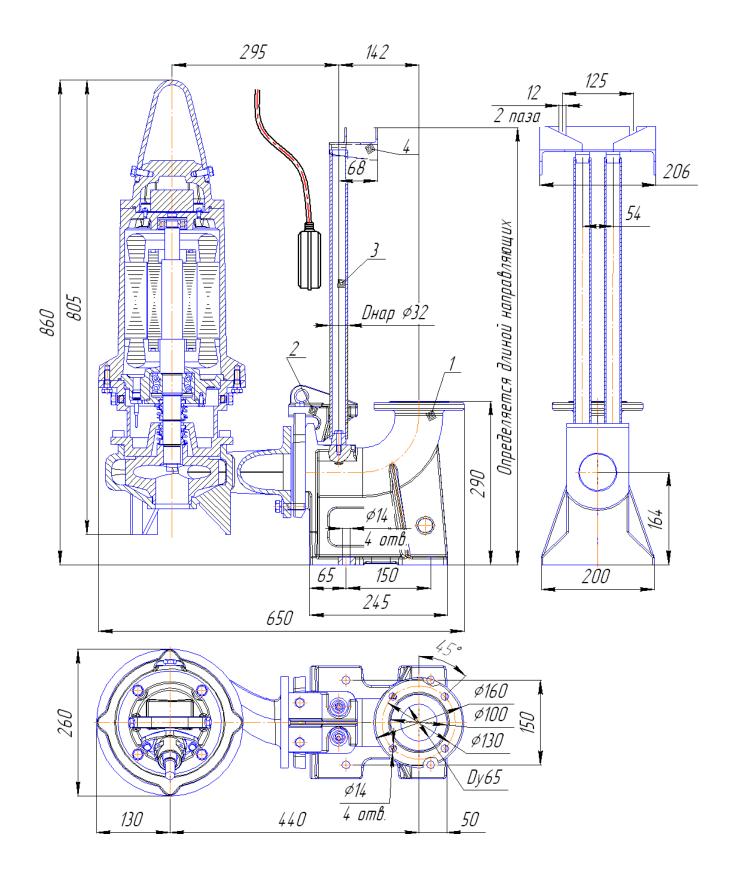


Рис. 78 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2~65/150-5,5/2-106$ с опускным устройством.

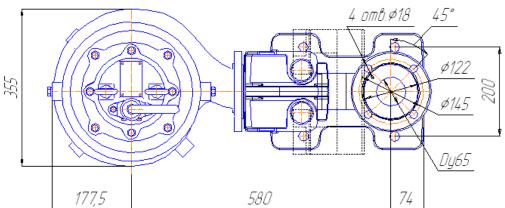


Рис. 79 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 65/250-5,5/4-106;$ $\Pi\Phi 2\ 65/250-7,5/4-106$ с опускным устройством.

Обозначение насоса «Иртыш»	L	L1
$\Pi\Phi 2\ 65/250 - 5,5/4$	996	851
$\Pi\Phi 2 65/250 - 7,5/4$	1031	896

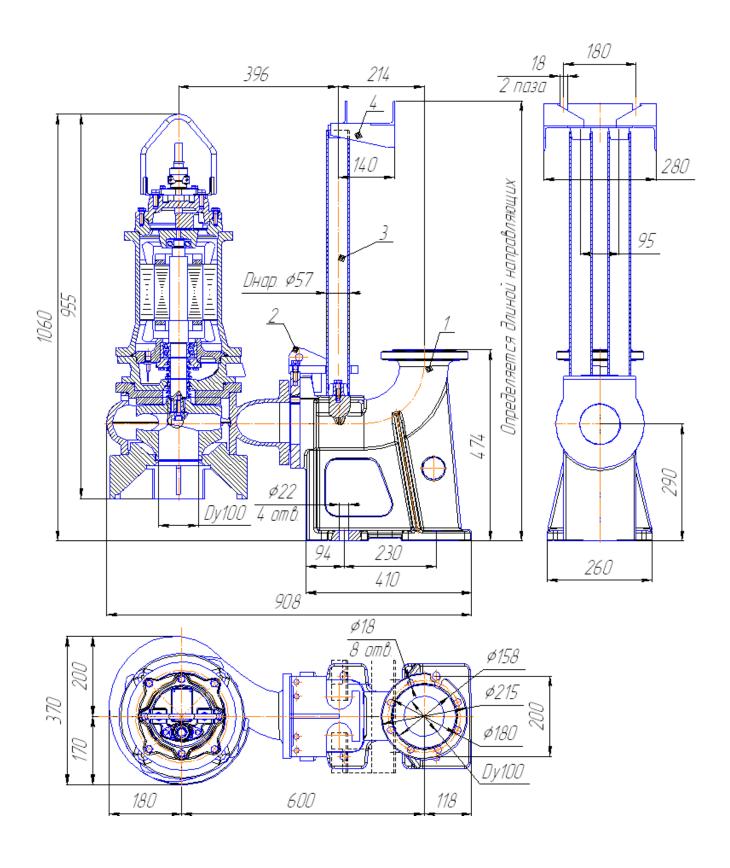


Рис. 80 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ2 100/200 -5,5/4 - 106 с опускным устройством.

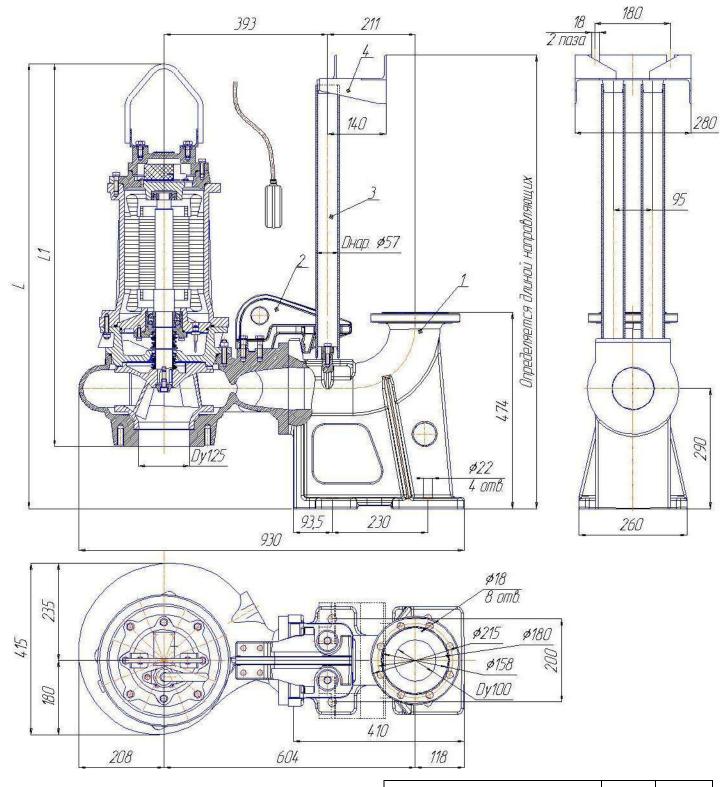


Рис. 81 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 1\ 100/240-5,5/4-106;$ $\Pi\Phi 1\ 100/240-7,5/4-106$ с опускным устройством.

Обозначение насоса «Иртыш»	L	L1
ПФ1 100/240 – 5,5/4	1040	890
ПФ1 100/240 – 7,5/4	1075	925

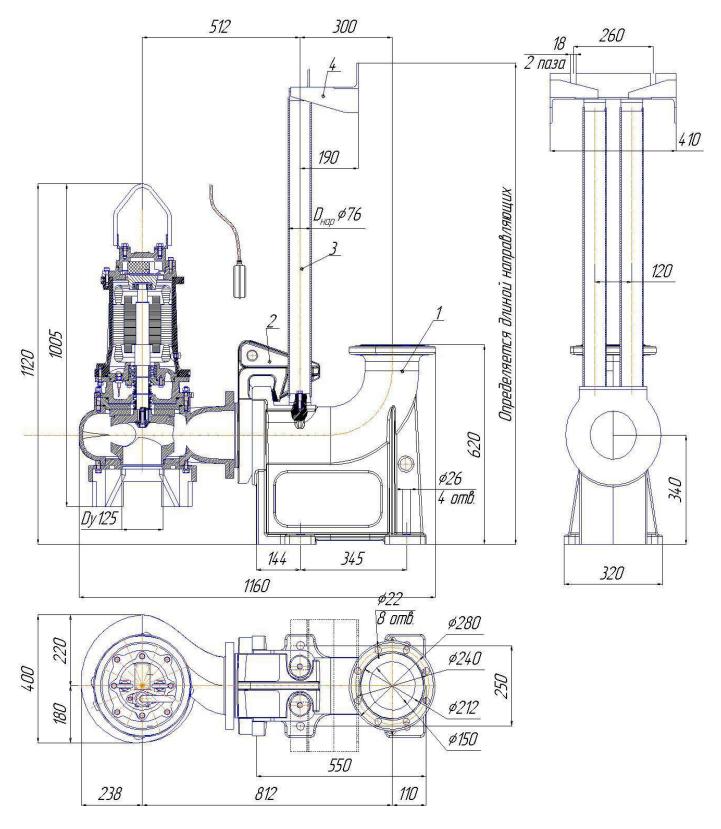


Рис. 82 Общий вид и габаритные размеры электронасоса "Иртыш" П Φ 2 150/205 – 7,5/4 – 106 с опускным устройством

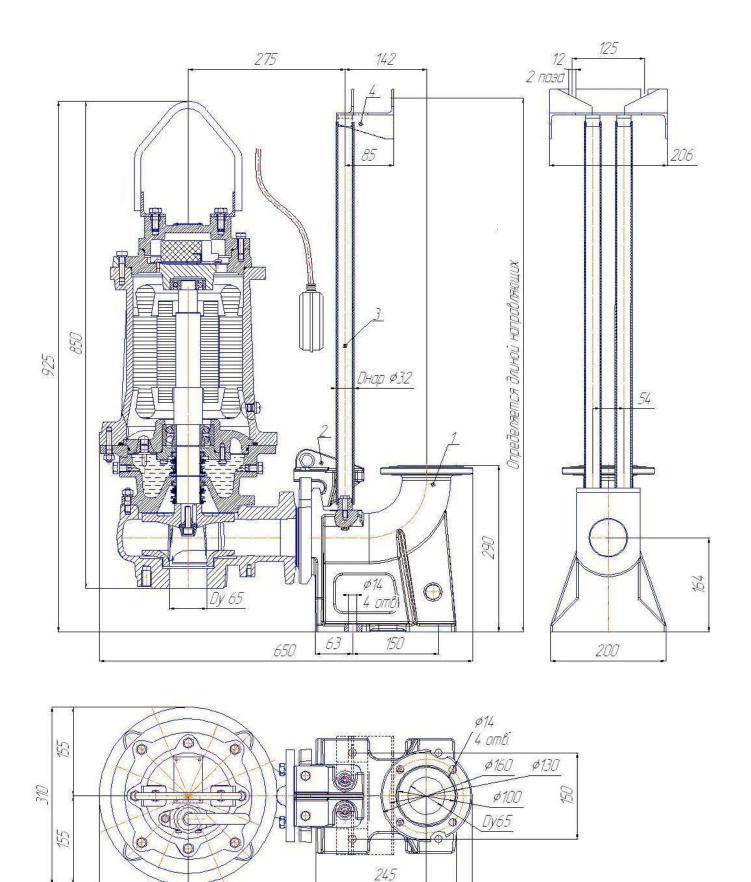


Рис. 83 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2~65/180-7,5/2-106$ с опускным устройством.

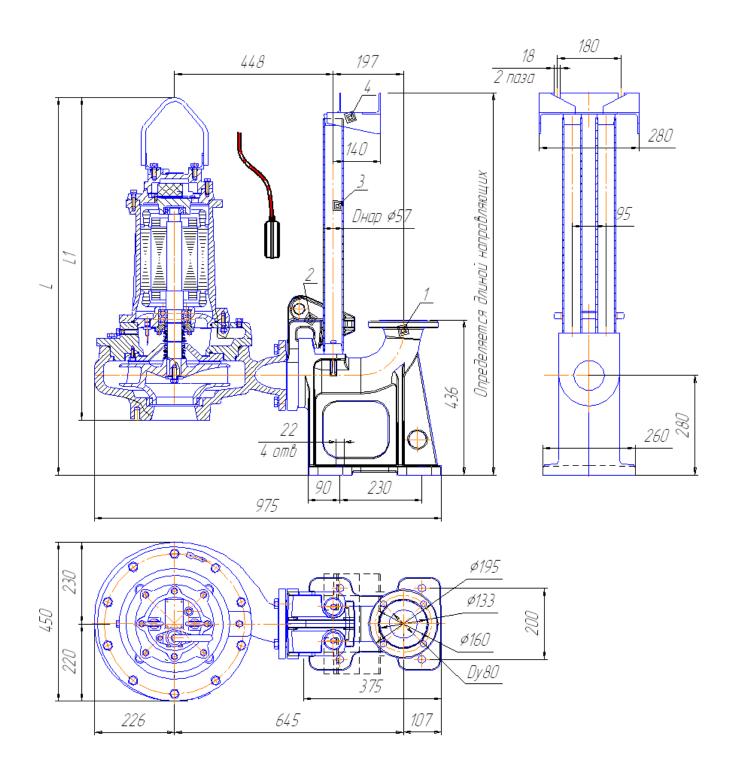


Рис. 84 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2~80/315-7,5/4-106;$ $\Pi\Phi 2~80/315-11/4-106$ с опускным устройством.

Обозначение насоса «Иртыш»	L	L1
$\Pi\Phi 2\ 80/315 - 7,5/4$	1065	910
$\Pi\Phi 2 \ 80/315 - 11/4$	1115	960

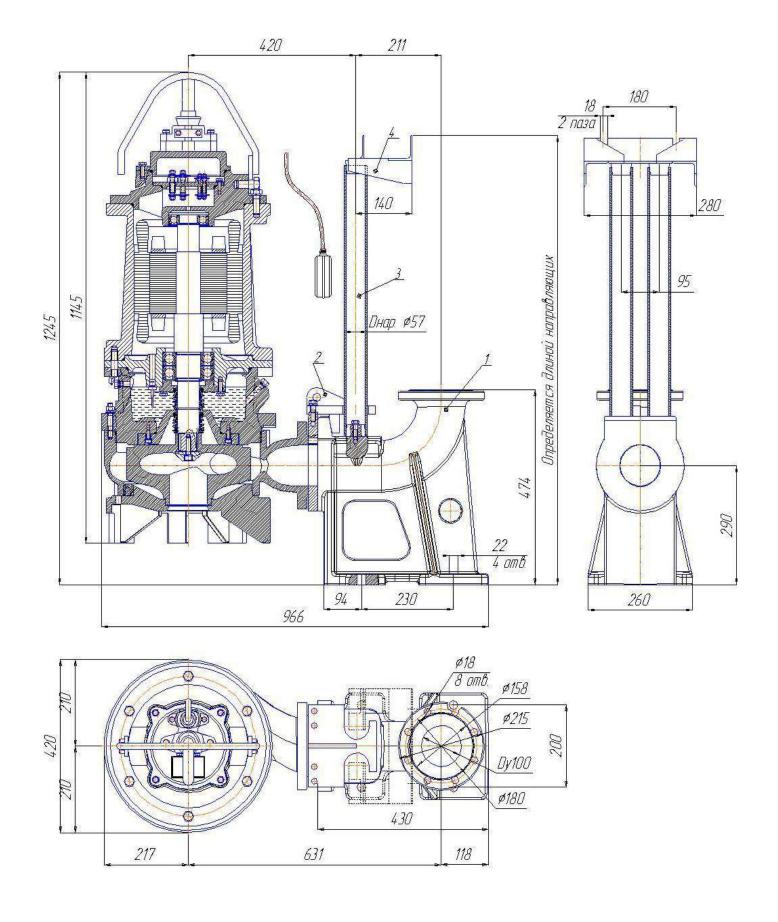


Рис. 85 Общий вид и габаритные размеры электронасоса "Иртыш" П Φ 2 100/310 — 7,5/4 — 106; П Φ 2 100/310 — 11/4 — 106 с опускным устройством

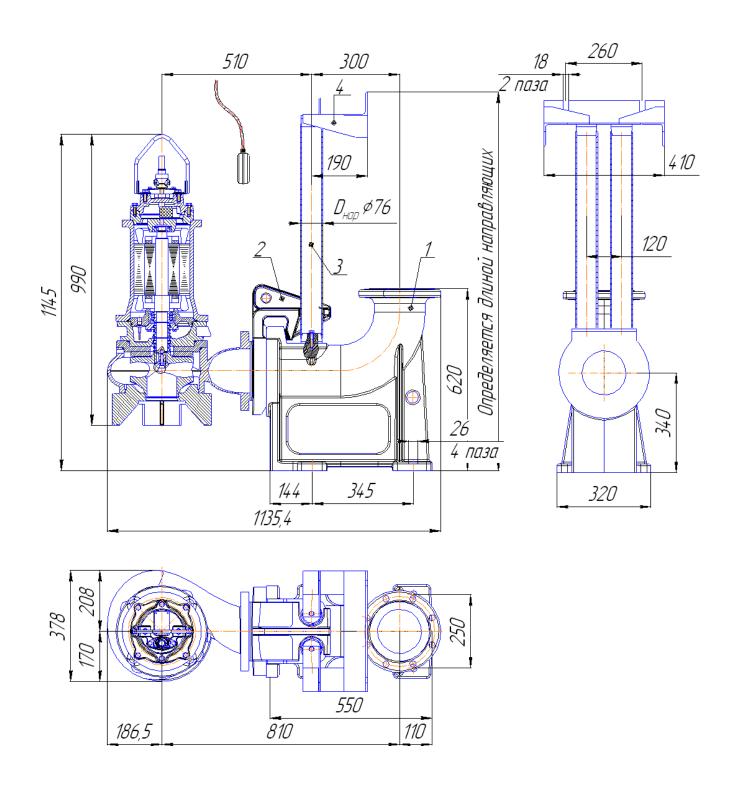


Рис. 86 Общий вид и габаритные размеры электронасоса "Иртыш" " $\Pi\Phi 2~150/215-7,5/4-106$ с опускным устройством

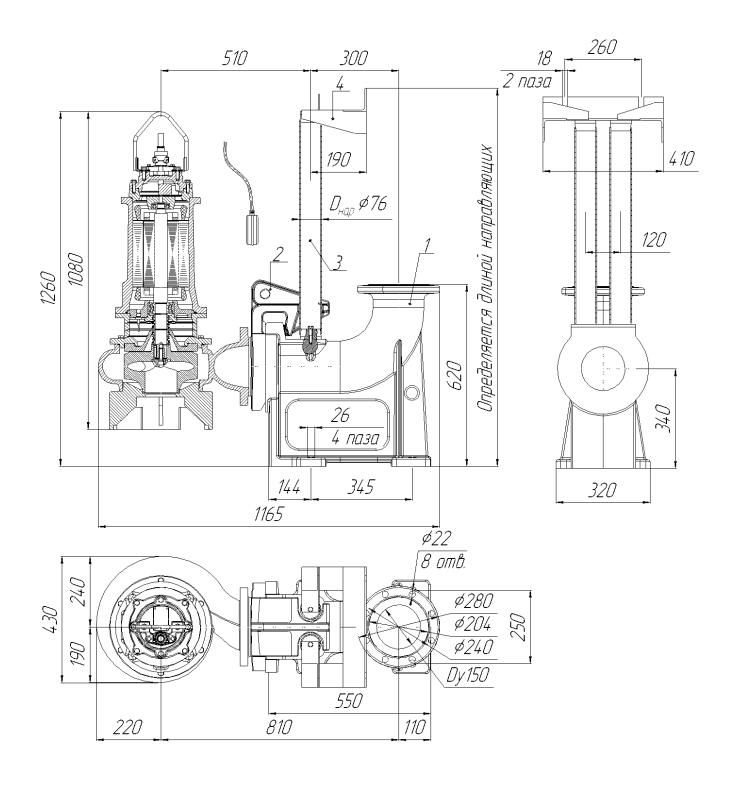


Рис. 87 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 150/255-11/4-106$ с опускным устройством

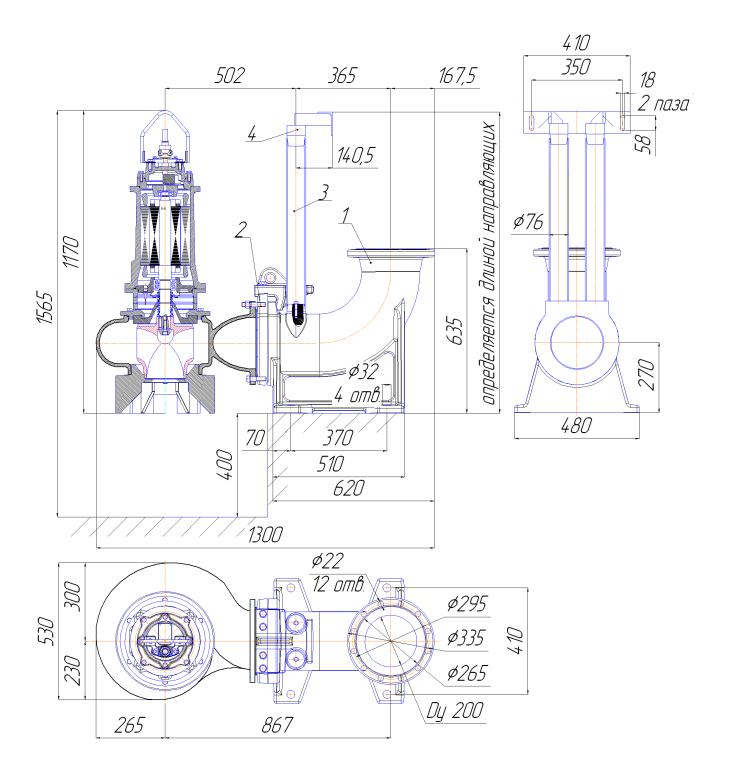


Рис. 88 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 200/220-7,5/4-106;$ $\Pi\Phi 2\ 200/220-11/4-106$ с опускным устройством

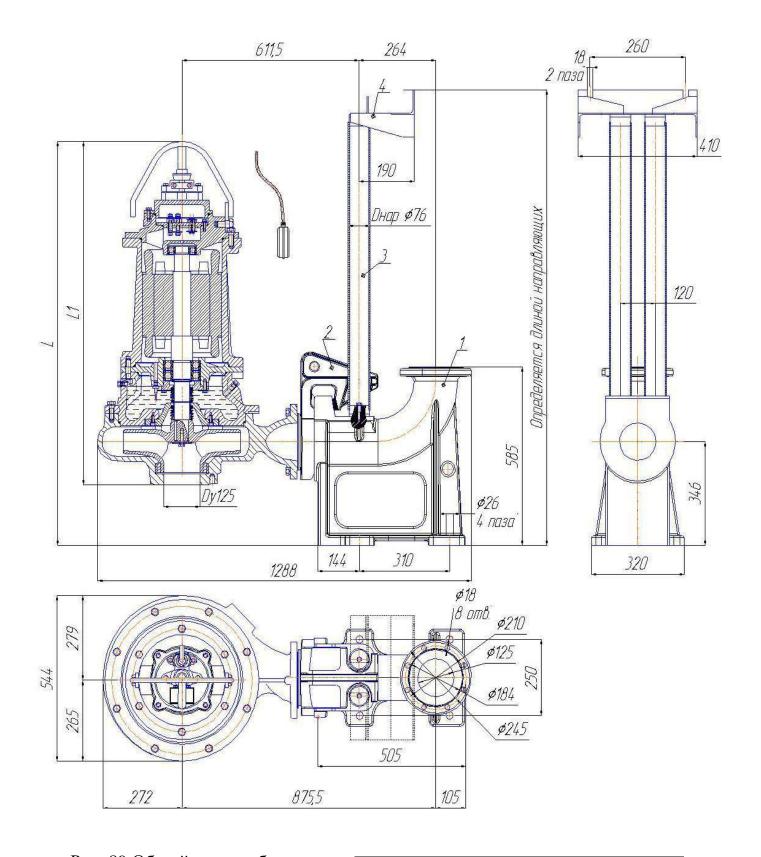


Рис. 89 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 125/400-11/6-106;$ $\Pi\Phi 2\ 125/400-15/6-106;$ $\Pi\Phi 2\ 125/400-18,5/6-106$ с опускным устройством.

- 1. Патрубок погружной; 2. Захват;
- 3. Направляющие; 4. Кронштейн.

Обозначение насоса «Иртыш»	L	L1
ПФ2 125/400 — 11/ 6	1330	1130
ПФ2 125/400 — 15/ 6	1330	1130
ПФ2 125/400 $-$ 18,5/6	1220	1420

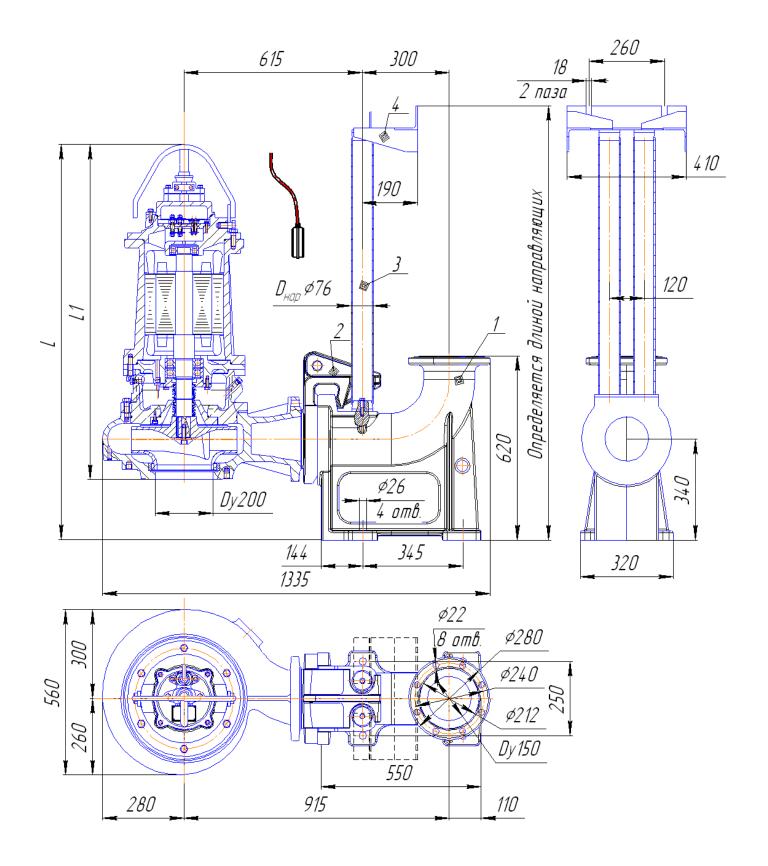


Рис. 90 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 150/315-11/6-106;$ $\Pi\Phi 2\ 150/315-15/6-106;$ $\Pi\Phi 2\ 150/315-18,5/6-106$ с опускным устройством.

- 1. Патрубок погружной; 2. Захват;
- 3. Направляющие; 4. Кронштейн.

Обозначение насоса «Иртыш»	L	L1
ПФ2 150/315 — 11/ 6	1295	1085
ПФ2 150/315 — 15/ 6	1335	1125
ПФ2 150/315 — 18,5/6	1425	1215

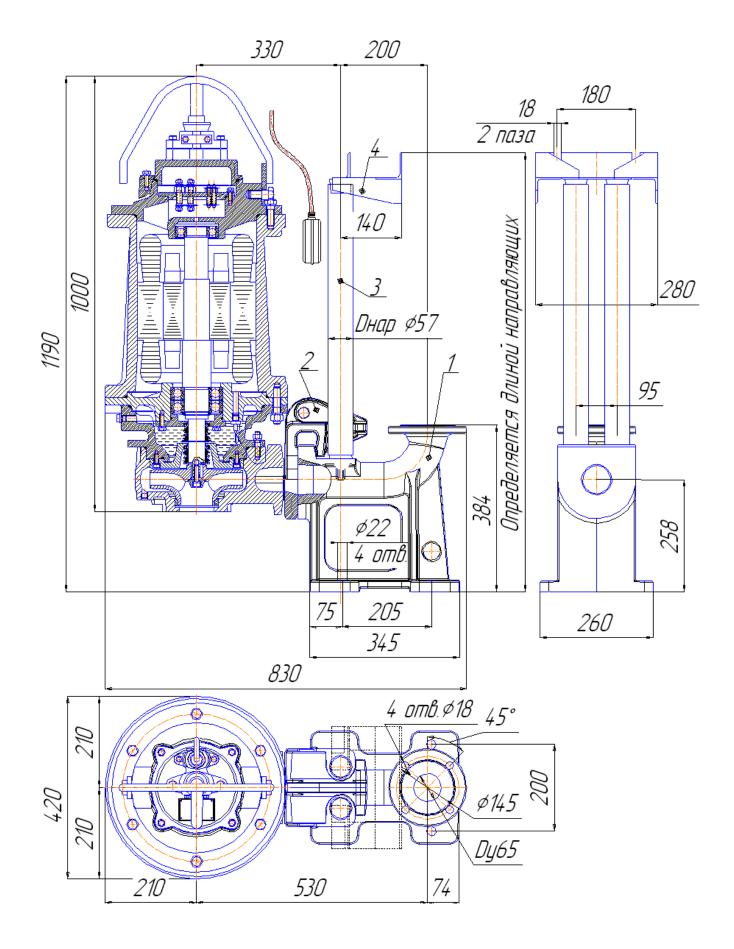
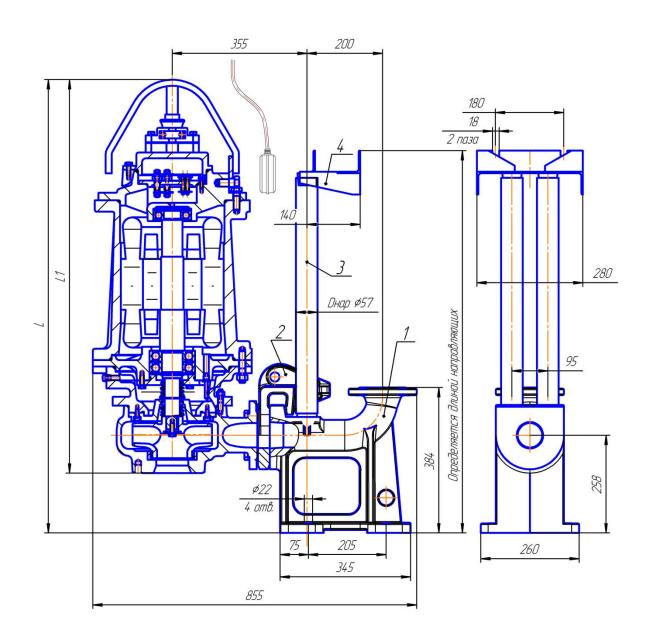



Рис. 91 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2$ 50/200 — 15/2— 106; $\Pi\Phi 2$ 50/200 — 18,5/2 — 106 с опускным устройством.

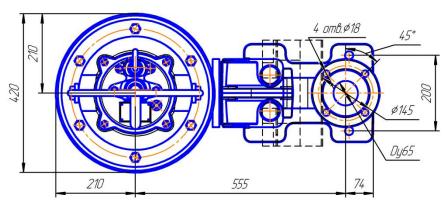


Рис. 92 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2$ 65/200 — 15/2— 106 $\Pi\Phi 2$ 65/200 — 18,5/2— 106; $\Pi\Phi 2$ 65/200 — 22/2— 106; $\Pi\Phi 2$ 65/200 — 30/2— 106 с опускным устройством.

- 1. Патрубок погружной; 2. Захват;
- 3. Направляющие; 4. Кронштейн.

Обозначение насоса «Иртыш»	L	L1
ПФ2 65/200 — 15/2		
ПФ2 65/200 — 18,5/2	1200	1040
ПФ2 65/200 — 22/2		
ПФ2 65/200 — 30/2	1290	1130

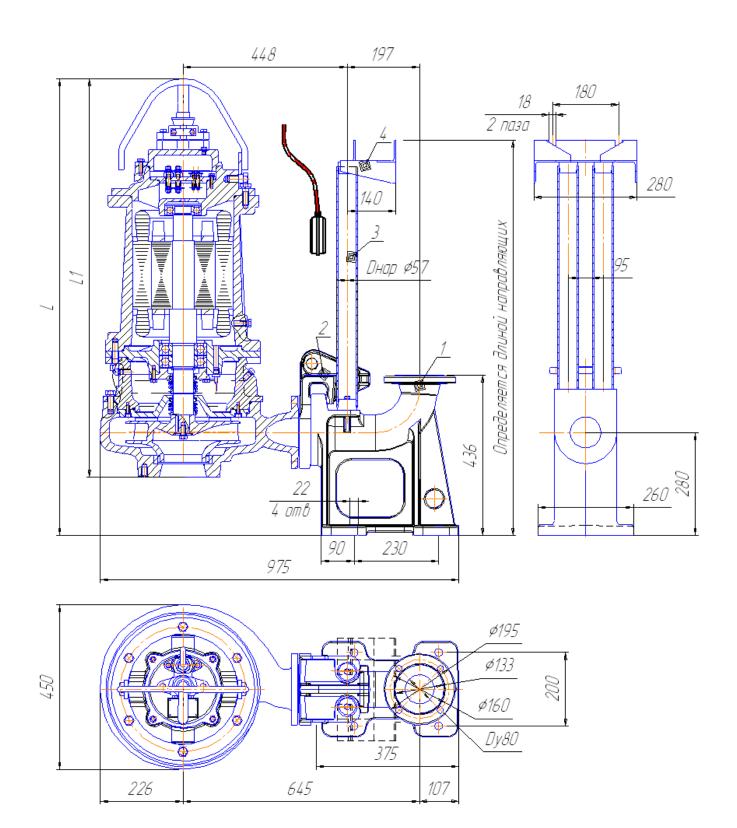


Рис. 93 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2~80/315-15/4-106;$ $\Pi\Phi 2~80/315-18,5/4-106$ с опускным устройством.

Обозначение насоса «Иртыш»	L	L1
$\Pi\Phi 2\ 80/315 - 15/4$	1205	1045
ПФ2 $80/315 - 18,5/4$	1245	1085

- 1. Патрубок погружной; 2. Захват;
- 3. Направляющие; 4. Кронштейн.

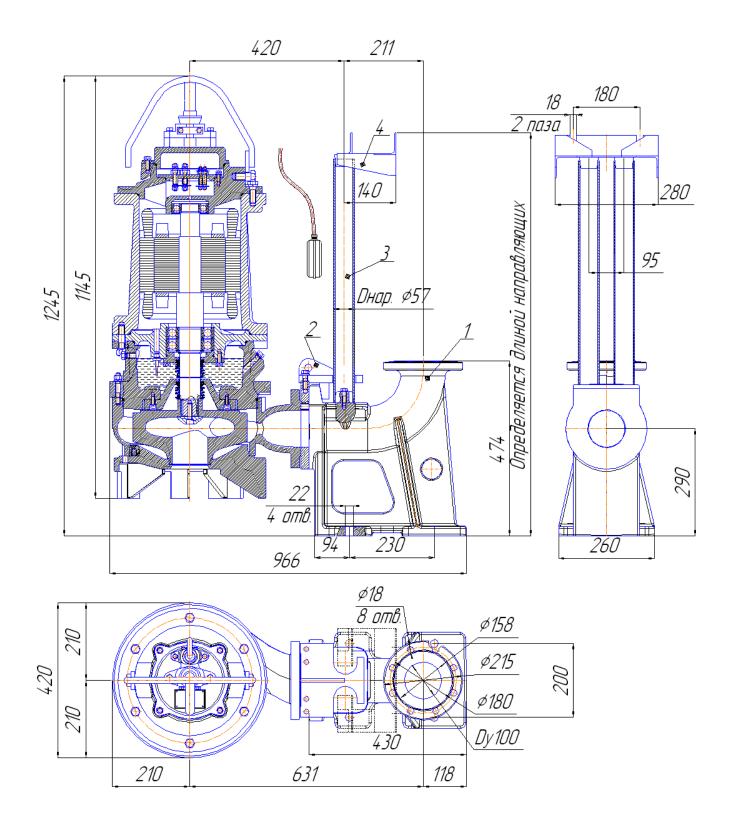
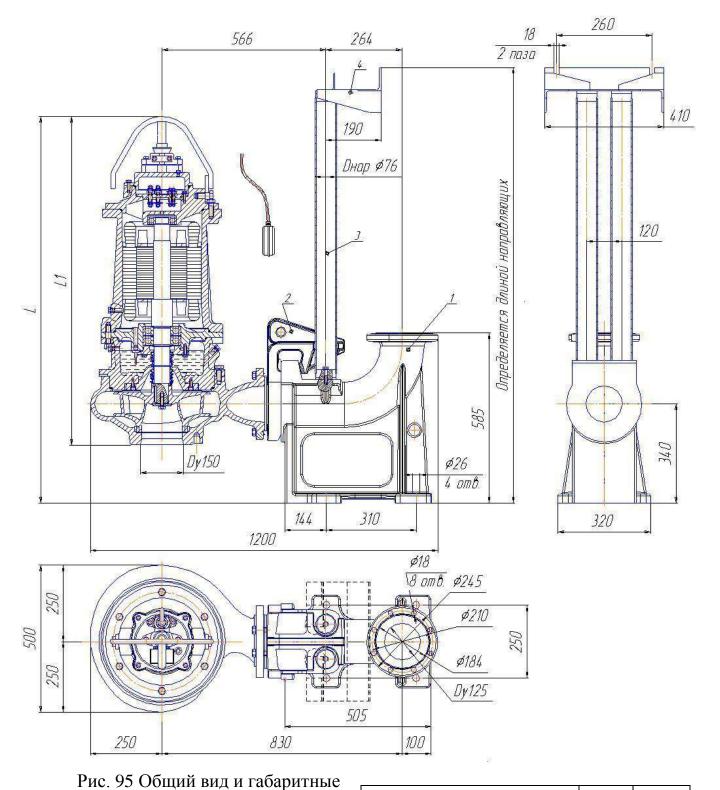



Рис. 94 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 100/310-15/4-106$ с опускным устройством.

размеры электронасоса "Иртыш" $\Pi\Phi 2\ 125/315 - 11/6 - 106;$ $\Pi\Phi 2\ 125/315 - 15/4 - 106;$ $\Pi\Phi 2\ 125/315 - 18,5/4 - 106;$ $\Pi\Phi 2\ 125/315 - 22/4 - 106;$ $\Pi\Phi 2\ 125/315 - 22/4 - 106;$ $\Pi\Phi 2\ 125/315 - 30/4 - 106$ с опускным устройством.

- 1. Патрубок погружной; 2. Захват;
- 3. Направляющие; 4. Кронштейн.

Обозначение насоса «Иртыш»	L	L1
$\Pi\Phi 2\ 125/315 - 11/6$	1290	1090
$\Pi\Phi 2\ 125/315 - 15/4$	1290	1090
ПФ2 125/315 — 18,5/4		
$\Pi\Phi 2\ 125/315 - 22/4$	1330	1130
ПФС 125/315 — 22/4		
$\Pi\Phi 2\ 125/315 - 30/4$	1420	1220

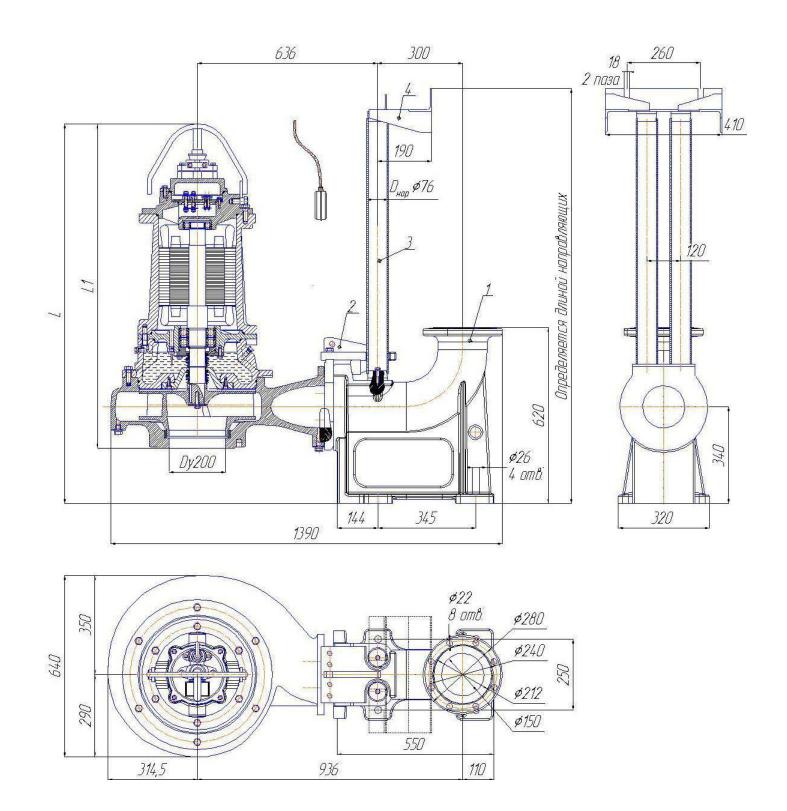


Рис. 96 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 3\ 150/400-15/6-106;$ $\Pi\Phi 3\ 150/400-18,5/6-106$ с опускным устройством.

Обозначение насоса «Иртыш»	L	L1
ПФЗ $150/400 - 15/6$	1335	1145
ПФЗ 150/400 — 18,5/6	1425	1230

- 1. Патрубок погружной; 2. Захват;
- 3. Направляющие; 4. Кронштейн.

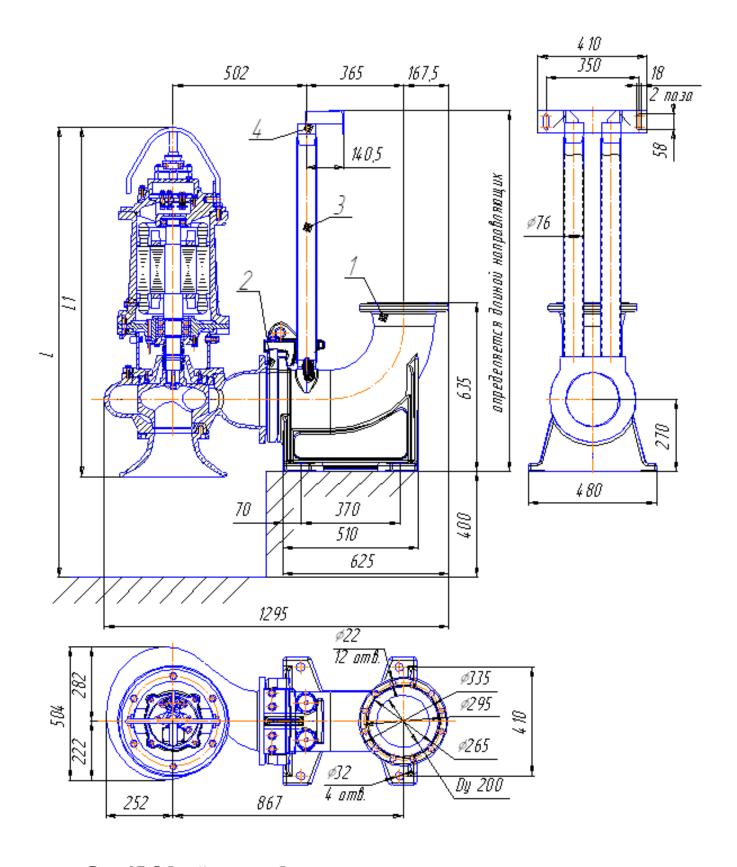


Рис. 97 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 200/265-15/4-106;$ $\Pi\Phi 2\ 200/265-18,5/4-106$ с опускным устройством.

- 1. Патрубок погружной; 2. Захват;
- 3. Направляющие; 4. Кронштейн.

Обозначение насоса «Иртыш»	L	L1
ΠΦ2 200/265 - 15/4	1660	1275
ПФЗ 200/265 — 18,5/4	1700	1315

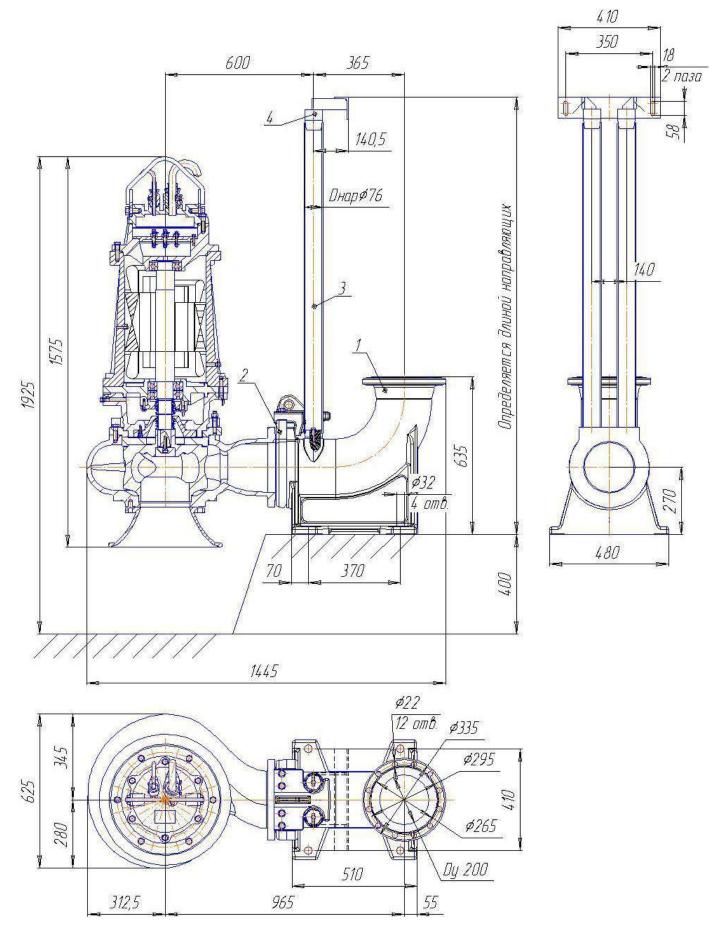


Рис. 98 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 200/360-\ 18,5/6-106;\ \Pi\Phi 2\ 200/360-22/6-106$ с опускным устройством.

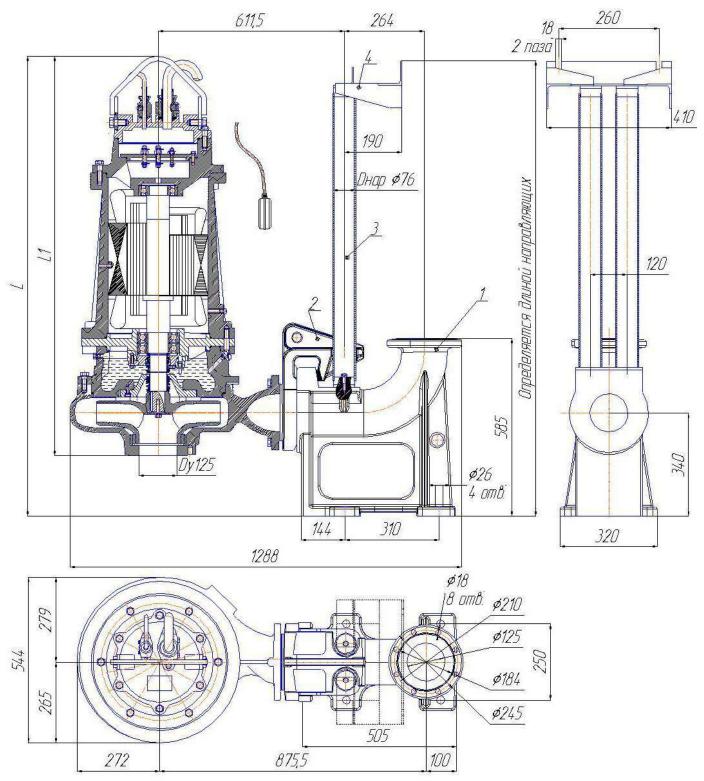


Рис. 99 Общий вид и габаритные размеры электронасоса "Иртыш"

 $\Pi\Phi 2 \ 125/400 - 22/6 - 106;$

 $\Pi\Phi 2 \ 125/400 - 37/4 - 106;$

 $\Pi\Phi 2\ 125/400 - 45/4 - 106;$

 $\Pi\Phi 2 \ 125/400 - 45/4 - 106;$

 $\Pi\Phi 2\ 125/400 - 55/4 - 106$

с опускным устройством.

Обозначение насоса «Иртыш»	L	L1
ПФ2 125/400 — 22/6		1255
ПФ2 125/400 — 37/4	1460	
ПФ2 125/400 — 45/4	1400	1233
ПФ2 125/400 — 45/4		
$\Pi\Phi 2 \ 125/400 - 55/4$	1515	1460

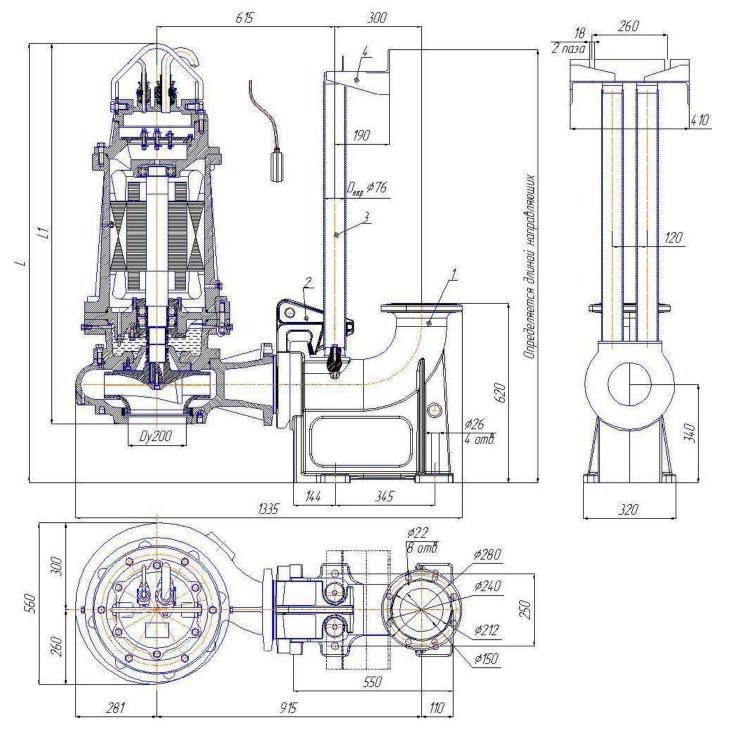


Рис. 100 Общий вид и габаритные размеры электронасоса "Иртыш"

 $\Pi\Phi 2\ 150/315 - 22/6 - 106;$

 $\Pi\Phi 2\ 150/315 - 37/4 - 106;$

 $\Pi\Phi 2 \ 150/315 - 45/4 - 106;$

 $\Pi\Phi 2\ 150/315 - 45/4 - 106;$

 $\Pi\Phi 2\ 150/315 - 55/4 - 106$

с опускным устройством.

- 1. Патрубок погружной; 2. Захват;
- 3. Направляющие; 4. Кронштейн.

Обозначение насоса «Иртыш»	L	L1
ПФ2 150/315 — 22/6		
ПФ2 150/315 — 37/4	1 4 6 5	1251
ПФ2 150/315 — 45/4	1465	1231
ПФ2 150/315 — 45/4		
$\Pi\Phi 2\ 150/315 - 55/4$	1520	1306
$\Pi\Phi C \ 150/315 - 55/4$	1320	1300

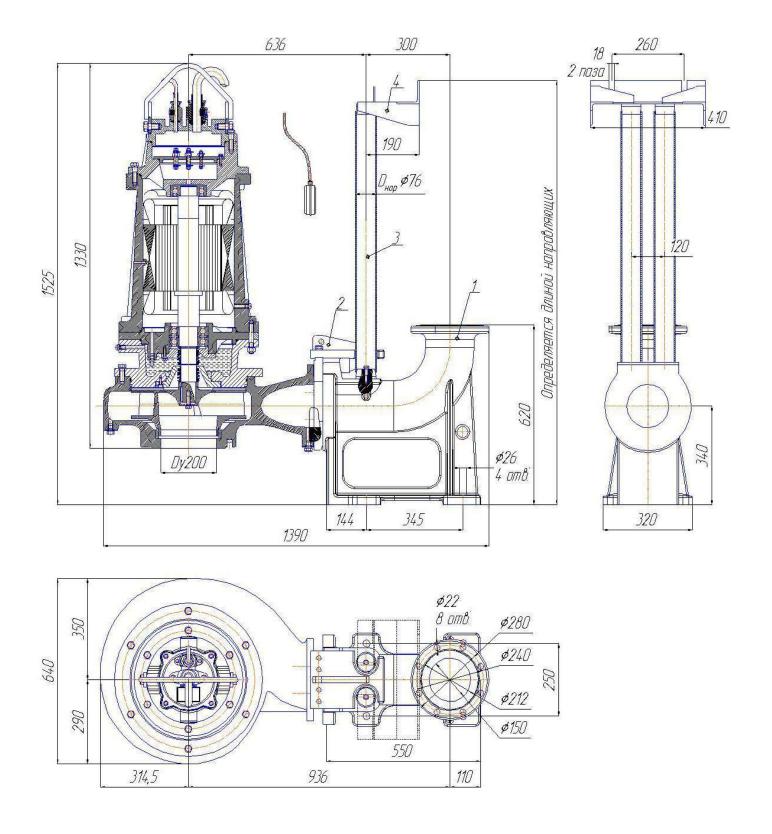


Рис. 101 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 3~150/400-22/6-106;\ \Pi\Phi 3~150/400-30/6-106$ с опускным устройством.

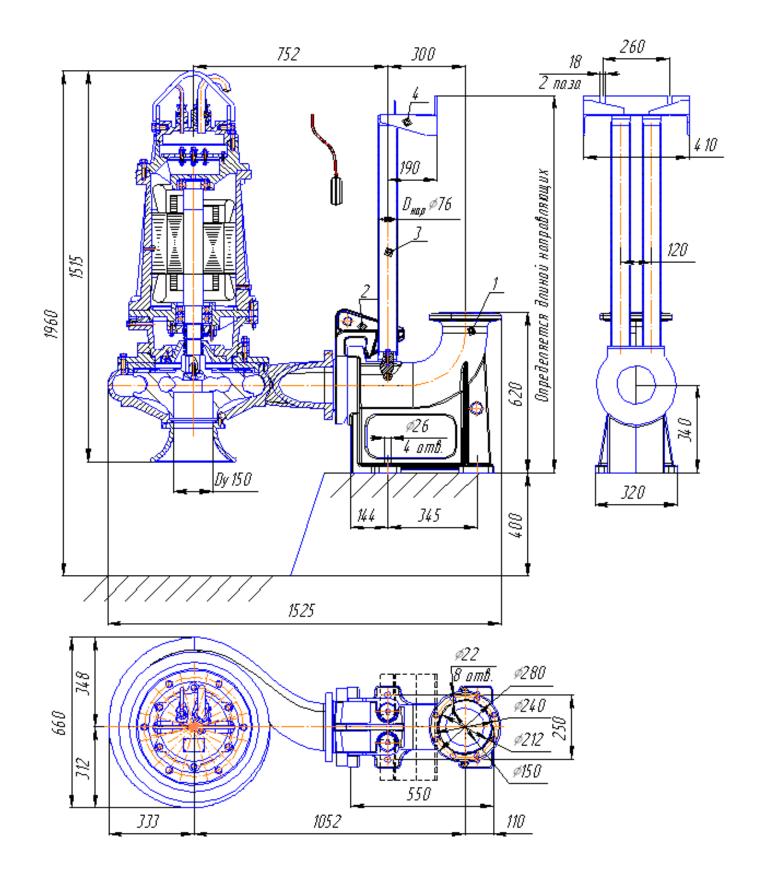


Рис. 102 Общий вид и габаритные размеры электронасоса "Иртыш" ПФ2 150/470 — 22/6 — 106; ПФ2 150/470 — 30/6 — 106 с опускным устройством.

Рис. 103 Общий вид и габаритные размеры электронасоса "Иртыш" " $\Pi\Phi 2\ 250/400-\ 22/6-106;\ \Pi\Phi 2\ 250/400-\ 30/6-106$ с опускным устройством.

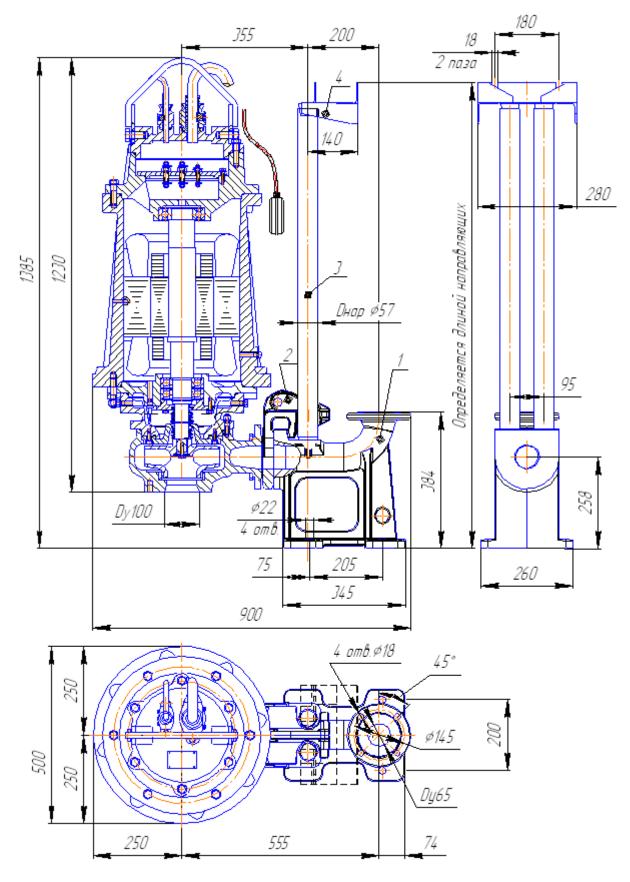


Рис. 104 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 65/200-37/2-106$ с опускным устройством.

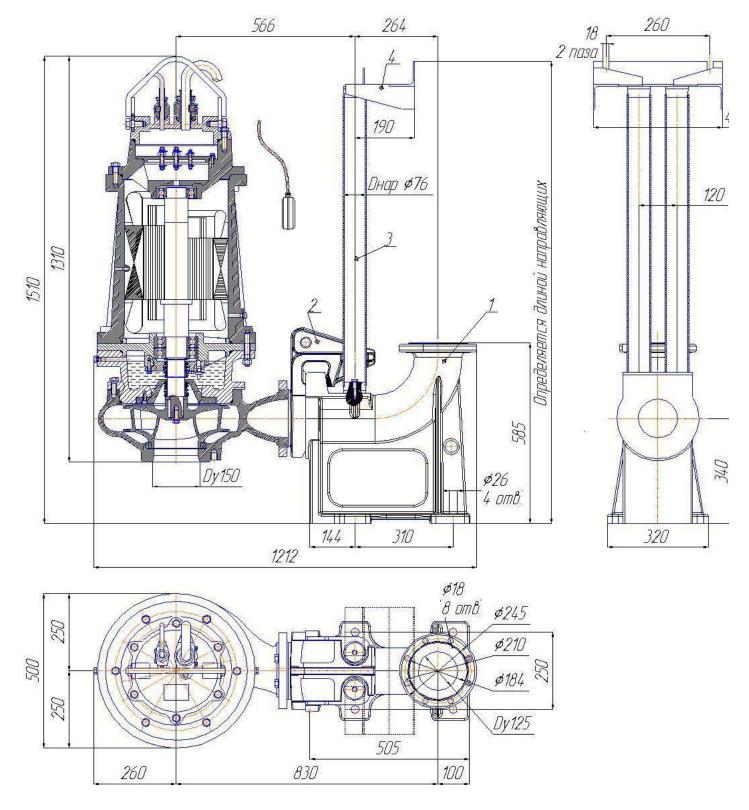


Рис. 105 Общий вид и габаритные размеры электронасоса "Иртыш" П Φ 2 125/315 — 37/4 — 106 с опускным устройством.

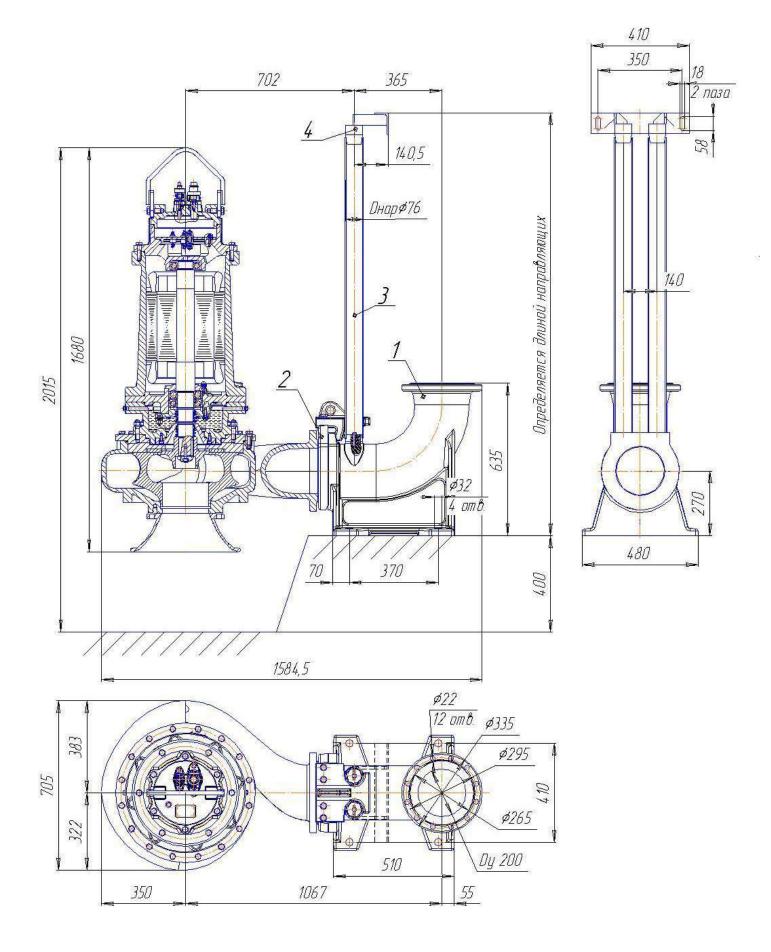


Рис. 106 Общий вид и габаритные размеры электронасоса "Иртыш" $\Pi\Phi 2\ 200/450-37/6-106$ с опускным устройством.

			Таолица /		
Дата (год, месяц)	Перекачиваем ая жидкость	Общее время работы в часах	Замечания о работе	Подпись	

Дата		Таблица 8 Должность, фамилия и подпись	
Снятия с хранения	Условия хранения	ответственного за хранение	
		Условия хранения	

Сведения о ремонте.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калиниград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.vzlet.nt-rt.ru || эл. почта: vtz@nt-rt.ru