

ЭЛЕКТРОНАСОС СЕРИИ «ИРТЫШ» ТИП ПД

ПАСПОРТ H3B.0303.0300.01 ПС

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.vzlet.nt-rt.ru || эл. почта: vtz@nt-rt.ru

ВНИМАНИЕ:

ПРЕЖДЕ, ЧЕМ ПОЛЬЗОВАТЬСЯ ЭЛЕКТРОНАСОСОМ СЕРИИ «ИРТЫШ» ТИПА ПД ВНИМАТЕЛЬНО ОЗНАКОМЬТЕСЬ С ПРАВИЛАМИ МОНТАЖА, ПУСКА, ЭКСПЛУАТАЦИИ И УХОДА ЗА НАСОСОМ И ШКАФОМ УПРАВЛЕНИЯ.

ЭЛЕКТРОДВИГАТЕЛЬ НАСОСА ОСНАЩЕН ВСТРОЕННОЙ ЗАЩИТОЙ

ЗАПРЕЩАЕТСЯ:

- ИСПОЛЬЗОВАТЬ НАСОС БЕЗ ШКАФА УПРАВЛЕНИЯ!
- ИЗМЕНЯТЬ СХЕМУ ШКАФА УПРАВЛЕНИЯ!
- ИЗМЕНЯТЬ СХЕМУ ПОДКЛЮЧЕНИЯ НАСОСА К ШКАФУ УПРАВЛЕНИЯ!
- ИСПОЛЬЗОВАНИЕ НАСОСА ДЛЯ ПЕРЕКАЧКИ ПИТЬЕВОЙ ВОДЫ

Подключение насоса к источнику энергии и эксплуатация насоса должны производиться квалифицированным специалистом в соответствии с ПУЭ и «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТЭ и ПТБ).

ПЕРЕД ПУСКОМ ЭЛЕКТРОНАСОСА ПРОВЕРИТЬ СООТВЕТСТВИЕ НАПРЯЖЕНИЯ В СЕТИ НАПРЯЖЕНИЮ НАСОСА, УКАЗАННОМУ НА ТАБЛИЧКЕ.

ПРИ ЭКСПЛУАТАЦИИ, ТРАНСПОРТИРОВАНИИ И ХРАНЕНИИ ЭЛЕКТРОНАСОСЫ «ИРТЫШ» ПД ДОЛЖНЫ БЫТЬ ОРИЕНТИРОВАНЫ В ВЕРТИКАЛЬНОМ ПОЛОЖЕНИИ.

ПРИЛОЖЕННУЮ К УПАКОВКЕ СТРОПУ ИСПОЛЬЗОВАТЬ ТОЛЬКО ДЛЯ ТРАНСПОРТИРОВКИ НАСОСОВ

Оглавление

Введ	ние	4
1.	Назначение	4
2.	Основные технические данные	6
	2.1. Показатели энергетической эффективности	6
	2.2. Технические данные насосов	6
	2.3. Технические данные электродвигателей насосов	7
	2.4. Технические данные шкафов управления	8
	2.5. Рабочие характеристики насосов	9
3.	Комплектность	13
4.	Устройство и принцип работы	13
	Подготовка к работе	14
	5.1. Меры безопасности при подготовке агрегата к работе	14
	5.2. Подготовка к монтажу	15
	5.3. Монтаж	15
6.	Использование насоса	16
	б.1. Пуск насоса	16
	6.2. Порядок контроля работоспособности насоса	17
	6.3. Возможные неисправности и способы их устранения	17
	б.4. Меры безопасности при работе насоса	20
	6.5. Остановка насоса	21
7.	Гехническое обслуживание	21
	Ресурсы, сроки службы и хранения	24
	8.1. Указания по выводу из эксплуатации и утилизации	27
9.	Перечень критических отказов в связи с ошибочными действиями	
	персонала	27
10	Свидетельство о приемке и консервации	28
	Гранспортирование и хранение	28
	Гарантии изготовителя	29
Рису		
	Рисунок 9 – 27. Общий вид, габаритные и присоединительные	
разме	ры электронасосов «Иртыш»	31
	Рисунок 28 – 46. Общий вид и габаритные размеры электронасосов	
«Ирт	ш» с опускным устройством	41
	Рисунок 47, 48. Общий вид шкафа управления электронасосов	
«Ирт		60
	Рисунок 49 –52. Монтажная схема подключения шкафа управления	
элект	онасосов «Иртыш»	62
	Рисунок 53 –56. Принципиальная схема подключения шкафа	
упраі	пения электронасосов «Иртыш»	64
Свеп	ния об эксплуатации	68
	ния о хранении	69
	ния о ремонте	70
Свед	and o personne	70

ВВЕДЕНИЕ

Настоящий паспорт (руководство по эксплуатации (РЭ)) является сопроводительной эксплуатационной документацией, поставляемой с изделием, и предназначен для ознакомления с конструкцией и техническими данными, а также содержит сведения, необходимые для правильной эксплуатации.

В связи с постоянной работой по совершенствованию изделия, повышающей его надёжность, в конструкцию могут быть внесены незначительные изменения, не отражённые в настоящем паспорте.

К монтажу и эксплуатации насосов должен допускаться только квалифицированный персонал, обладающий знанием и опытом по монтажу и обслуживанию насосного оборудования, ознакомленного с конструкцией насоса и настоящего РЭ.

1. НАЗНАЧЕНИЕ

1.1. Электронасос серии «Иртыш» типа ПД является моноблочным агрегатом, предназначен для перекачивания чистой воды (кроме морской) температурой от 273 до 323К (от 0 до 50°С) и водородным показателем рН 6,5...9,0, и других жидкостей, сходных с чистой водой по плотности, вязкости и химической активности. Перекачиваемые жидкости не должны содержать механических примесей по объему более 0,1% и размером более 2 мм.

Насосы серии «Иртыш» типа ПД пригодны для применения в:

- водоснабжении;
- промышленности;
- сельском хозяйстве.
- 1.2. Условное обозначение электронасоса.

Иртыш	П	Д]-	50	/	125].	140	-		-	20	-		1,1	/	2	Ex	Υ/Δ	-	0	1	6
1	2	3	4	-	5	/	6].	7	-	8]-[9	-	10	11	/	12	13	14	-	15	16	17

- 1 Серия насосов Иртыш;
- 2 Тип электродвигателя:
 - Π погружной электродвигатель без принудительного охлаждения;
 - Р погружной электродвигатель с принудительным охлаждением;
 - H наружный электродвигатель («сухой»);
- 3 Тип гидравлической части насоса
 - Φ для сточных масс;
 - Д для слабозагрязнённой и чистой воды;
 - Ш шламовый;
 - П песковый;
 - Γ грунтовый;
 - О осевой.
- 4 Тип рабочего колеса:
 - 1, 2, 3 и т.д. одно-, двух-, трёх- и т.д. канальное закрытое рабочее колесо;
 - с Вихревое рабочее колесо;

Без обозначения – многоканальное рабочее колесо (для дренажных насосов).

- 5 Номинальный диаметр напорного патрубка;
- 6 Номинальный диаметр рабочего колеса;

- 7 Фактический диаметр рабочего колеса;
- 8 Конструктивное исполнение:
 - К- рабочее колесо из нержавеющей стали.
 - Х- вся проточная часть из нержавеющей стали.
 - 0,1- материал пар трения торцового уплотнения карбид вольфрама;

Без обозначения – штатное исполнение.

- Т- комплектация насоса температуростойкими кабелями.
- 9 Длина кабеля по спец. заказу, м (например 20м), допуск на длину кабеля $\pm 5\%$; Без обозначения штатная длина кабеля (10м), допуск на длину кабеля $\pm 5\%$.
- 10 Тип питающей сети:
 - М монофазный 1Ф 220В;
 - $A 60\Gamma$ ц;
 - 0,2 трехфазный 220В;
 - 0,66-660B;
 - 6 6000B;
 - 10 10000B;

Без обозначения – трехфазный 380В, 50Гц.

- 11 Номинальная мощность электродвигателя;
- 12 Число полюсов электродвигателя;
- 13 Исполнение электродвигателя;

Ех – взрывозащищенного исполнения;

Без обозначения – базовый электродвигатель.

14 – Тип подключения электродвигателя;

380/660 (220/380) — подключение «треугольник/звезда»;

Без обозначения – подключение «звезда».

- 15 Вариант монтажа насоса:
 - 0 мобильный погружной;
 - 1 стационарный погружной (под опускное устройство);
 - 2 стационарный моноблочный горизонтальный;
 - 3 стационарный моноблочный вертикальный;
 - 4 стационарный на плите с муфтой горизонтальный;
 - 5 стационарный в трубе;
 - 6 стационарный на плите с ременной передачей.
- 16 Исполнение шкафа управления:
 - 0 без шкафа управления;
 - 1 ручного управления;
 - 2 автомат с одним или двумя поплавковыми выключателями;
 - 3 автомат для двухнасосной станции.
- 4 автомат с одним поплавковым выключателем климатического исполнения УХЛ1.
- 17 Способ защиты двигателя:
 - 0 без защиты;
 - 1 термозащита;
 - 2 влагозащита;
 - 6 влаго-термозащита;
 - 7 влаго-термозащита, контроль температуры подшипников.
 - 8 влаго-термозащита, контроль вибрации подшипников.
- 9 влаго-термозащита, контроль температуры подшипников, контроль вибрации.

2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

Рабочие характеристики насосов приведены на рис. 1-8, габаритные и присоединительные размеры на рис. 9-27 (Обозначение насосов «Иртыш» приведено без указания фактического диаметра рабочего колеса).

Мах. температура откачиваемой воды, 50° С не более. Допускается кратковременная работа (15 минут) при температуре 55° С с последующим перерывом в течении 45 минут. Насос выполнен в климатическом исполнении УХЛ5* ГОСТ 15150-69 (значение температуры воздуха при эксплуатации $+1^{\circ}$ С ... $+40^{\circ}$ С).

Максимальная глубина погружения электронасоса – 10м.

2.1. Показатели энергетической эффективности.

Центробежные насосы относятся к установкам, активно расходующим топливно-энергетические ресурсы (ТЭР).

Показатель энергетической эффективности – КПД при номинальной нагрузке, т.е. отношение мощности насоса к мощности на приводном валу и отображено в графике рабочей характеристики.

2.2. Технические данные насосов:

Таблица 1.

Обозначение	Подача,	Напор,	КПД насоса,	Macca*,
насоса «Иртыш»	M^3/H	M	% не менее	кг
ПД 32/125 – 1,1/2				40
ПД 32/160 – 3/2				75
ПД 32/200 – 5,5/2				
ПД 32/250 – 11/2				175
ПД 40/200 – 7,5/2				
ПД 40/250 – 15/2				
ПД 40/315 – 30/2				
ПД 50/125.140 — 3/2	25	20	50	60
ПД 50/160 – 4/2				90
ПД 50/200.185 — 11/2	45	40	55	185
ПД 50/200.198 – 15/2	60	46	57	320
ПД 50/250 – 22/2				
ПД 50/315 – 37/2				
ПД 65/125 – 5,5/2				
ПД 65/160 – 7,5/2				170
ПД 65/200.185 — 18,5/2	100	38	54	350
ПД 65/200 — 22/2				
ПД 65/250 — 37/2				510
ПД 80/125 – 11/2				
ПД 80/160.150 – 11/2	90	27	59	150
ПД 80/160.170 – 15/2	110	30	60	330
ПД 100/200 – 45/2				
ПД 125/250.277 – 15/4	210	18	63	400
ПД 125/315.290 — 18,5/4	160	25	61	450
ПД 125/315 — 30/4				550
ПД 150/250.255 — 18,5/4	300	14	65	450
ПД 150/250 — 37/4				
ПД 150/315.332 — 37/4	280	34	64	650
ПД 150/315.332 — 45/4	320	32	65	650
ПД 150/315 – 55/4				

*Масса насосов указана без шкафа управления и дополнительных устройств.

2.3. Технические данные электродвигателей насосов:

Тип — специального исполнения, герметизированный, встроенного типа, асинхронный, трёхфазный с короткозамкнутым ротором. Степень защиты IP58.

Таблица 2.

	1			1			аолица
Обозначение насоса «Иртыш»	Мощность, кВт	Напряжение, В	Частота тока, Гц	Соединение обмоток по схеме	Номинальный ток, А	Частота вращения, об /мин	Класс нагревостойкости
ПД 32/125 — 1,1/2	1,1				2,6	2730	
ПД 32/160 — 3/2	3				7	2940	
ПД 32/200 – 5,5/2	5,5				10,7	2940	
ПД 32/250 – 11/2	11				21	2895	
ПД 40/200 – 7,5/2	7,5				15	2895	
ПД 40/250 – 15/2	15				30	2940	
ПД 40/315 – 30/2	30				56	2940	
ПД 50/125 – 3/2	3				7	2940	
ПД 50/160 – 4/2	4				7,9	2940	
ПД 50/200 – 11/2	11				21	2895	
ПД 50/200 – 15/2	15				30	2940	
ПД 50/250 — 22/2	22				42	2940	
ПД 50/315 — 37/2	37				67	2940	
ПД 65/125 – 5,5/2	5,5				10,7	2940	
ПД 65/160 – 7,5/2	7,5	380	50	*	15	2940	F
ПД 65/200 — 18,5/2	18,5	360	30	^	35	2940	1'
ПД 65/200 — 22/2	22				42	2940	
ПД 65/250 — 37/2	37				67	2940	
ПД 80/125 — 11/2	11				21	2895	
ПД 80/160 — 11/2	11				21	2895	
ПД 80/160 — 15/2	15				30	2940	
ПД 100/200 — 45/2	45				81,5	2940	
ПД 125/250 — 15/4	15				29	1460	
ПД 125/315 — 18,5/4	18,5				35	1460	
ПД 125/315 — 30/4	30				56	1460	
ПД 150/250 — 18,5/4	18,5				35	1460	
ПД 150/250 — 37/4	37				72	1470	
ПД 150/315 — 37/4	37				72	1470	
ПД 150/315 — 45/4	45				87	1470	
ПД 150/315 — 55/4	55				107	1485	

^{*} Обозначение насоса «Иртыш» приведено без указания фактического диаметра рабочего колеса.

ВНИМАНИЕ! Запрещается работа электронасоса на режимах, выходящих за пределы рабочей зоны характеристик.

2.4. Технические данные шкафов управления с устройством защиты двигателя УЗД-8Р (с УЗД-8Р и устройством кондиционности фаз УКФ-4).

Таблица 3.

$N_{\underline{0}}$	Наименование	Значение
1	Напряжение питания шкафа управления / частота тока	~380В*/50Гц
2	Тип датчиков температуры	CT14-2
3	Тип датчиков влажности	Датчик влажности СС06
4	Тип датчиков уровня бака	сухой контакт
5	Допустимое отклонение напряжения питания от номинала	+10%10%
6	Окружающая температура при работе	(-40+50)°C
7	Окружающая температура при хранении	(-40+50)°C
8	Относительная влажность воздуха	80% без конденсата
9	Максимальная высота над уровнем моря	1000м
10	Габариты шкафа управления насосов «Иртыш» мощностью от 1,1 до 11кВт	310x220x400 MM
11	Масса шкафа управления насосов «Иртыш» мощностью от 1,1 до 11кВт	7,5кг
12	Габариты шкафа управления насосов «Иртыш» мощностью от 11 до 18,5кВт	400x220x500 MM
13	Масса шкафа управления насосов «Иртыш» мощностью от 11 до 18,5кВт	22кг
14	Габариты шкафа управления насосов «Иртыш» мощностью от 22 до 30кВт	500x220x650 MM
15	Масса шкафа управления насосов «Иртыш» мощностью от 22 до 30кВт	25кг
16	Габариты шкафа управления насосов «Иртыш» мощностью от 37 до 55кВт	650x250x800 MM
17	Масса шкафа управления насосов «Иртыш» мощностью от 37 до 55кВт	45кг
18	Степень защиты шкафа управления насосов «Иртыш» мощностью от 1,1 до 11кВт	IP31
19	Степень защиты шкафа управления насосов «Иртыш» мощностью от 11 до 55кВт	IP54

2.5. Рабочие характеристики насосов (рис. 1 - 8):

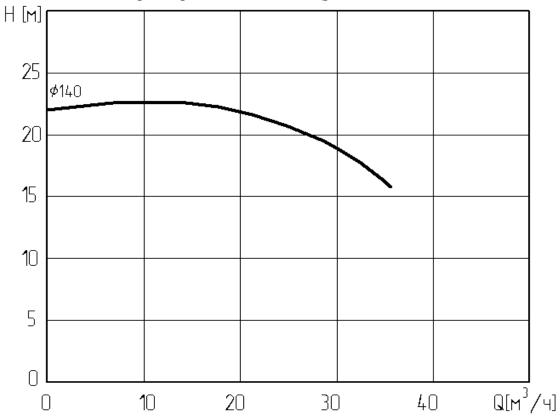


Рис. 1 Рабочие характеристики насоса «Иртыш»: ПД 50/125 - 3/2.

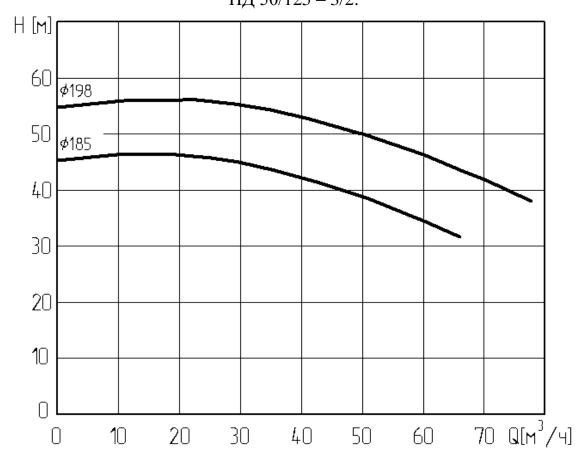


Рис. 2 Рабочие характеристики насоса «Иртыш»: ПД 50/200.185-11/2; ПД 50/200.198-15/2.

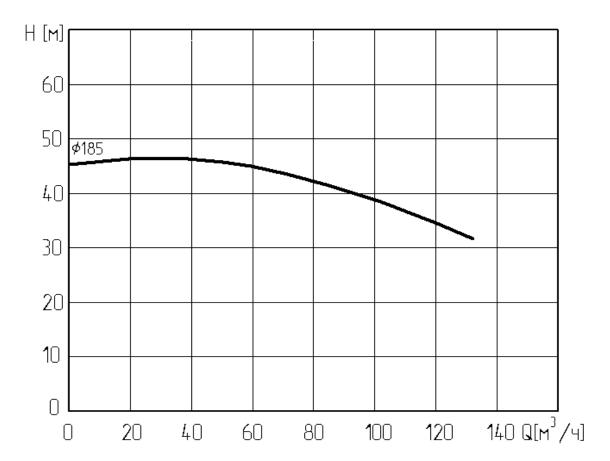


Рис. 3 Рабочие характеристики насоса «Иртыш»: ПД 65/200.185 - 18,5/2;

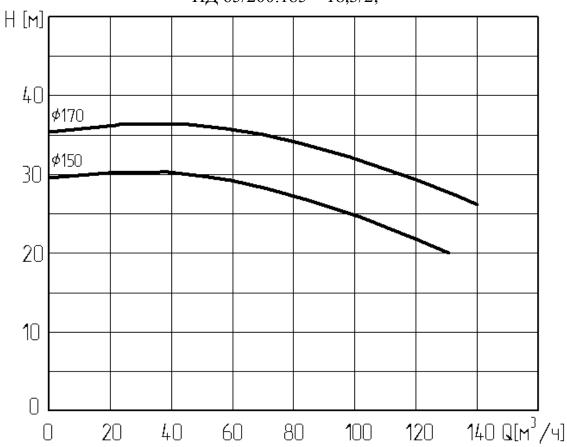


Рис. 4 Рабочие характеристики насоса «Иртыш»: ПД 80/160.150-11/2; ПД 80/160.170-15/2.

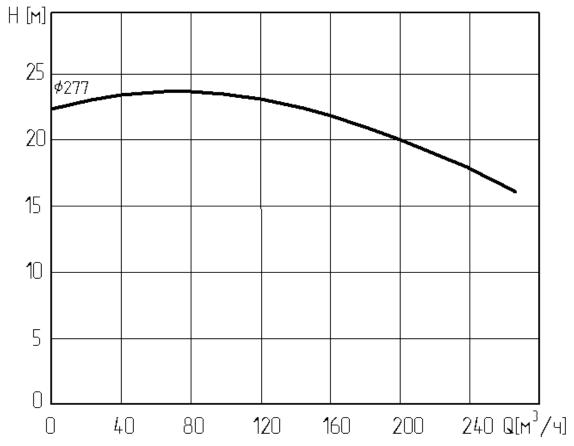


Рис. 5 Рабочие характеристики насоса «Иртыш»: ПД 125/250.277 - 15/4.

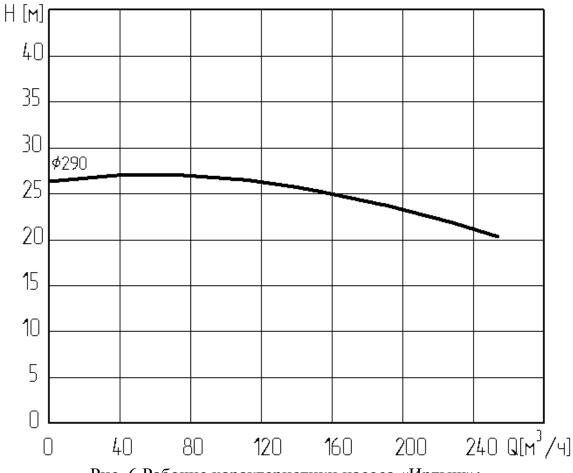


Рис. 6 Рабочие характеристики насоса «Иртыш»: $\Pi Д 125/315.290 - 18,5/4;$

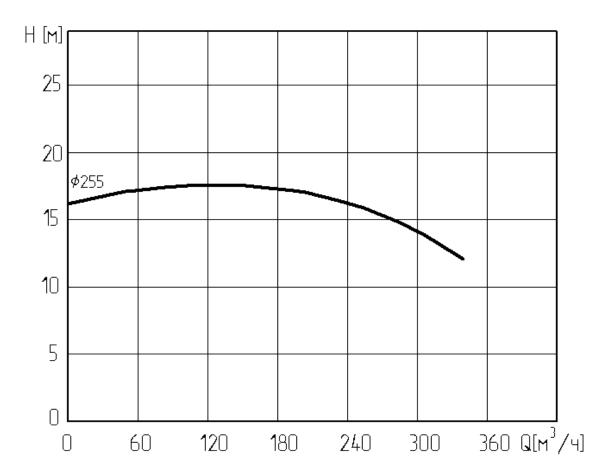


Рис. 7 Рабочие характеристики насоса «Иртыш»: ПД 150/250.255 - 18,5/4;

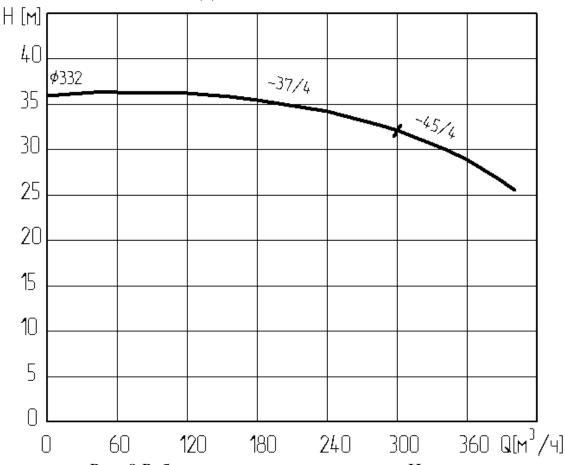


Рис. 8 Рабочие характеристики насоса «Иртыш»: $\Pi Д 150/315.332 - 37/4;$

ПД 150/315.332 — 45/4;

Примечания:

- 1. Параметры даны при работе насосов на чистой воде в сети с частотой тока 50 Ги.
- 2. При эксплуатации допускается снижение напора до 10 %.

3. КОМПЛЕКТНОСТЬ

3.1. Комплект поставки

- 1. Электронасос, со встроенным кабелем (-ями) длиной 10м (либо иных длин по спец. заказу, допуск на длину кабеля $\pm 5\%$)-----1 шт.
- 2. Шкаф управления------1 шт.
- 3. Паспорт-----1 экз.
- 4. Поплавковый выключатель (-ли), (только для шкафов управления исполнения 2 (см. усл. обозначение))------1комп.

Запасные части к электронасосу, а также дополнительные устройства поставляются по отдельному договору и за отдельную плату.

4. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

- 4.1. Электронасос серии «Иртыш» погружного типа является моноблочным насосным агрегатом. В зависимости от исполнения состоит из:
 - электродвигателя;
 - гидравлической части;
 - системы влагозащиты;
 - система термозащиты;
 - шкафа управления;
 - поплавкового(-ых) выключателя(-лей);
 - дополнительных устройств (в комплект поставки не входят).
- 4.1.1. Электродвигатель рис. 9 27 поз. 1 специального исполнения, герметизированный, встроенного типа, асинхронный, трёхфазный (монофазный) с короткозамкнутым ротором, оснащен встроенными в обмотки термодатчиками, расположен вертикально над гидравлической частью и охлаждается перекачиваемой средой.
- 4.1.2. *Гидравлическая часть* состоит из центробежного многоканального закрытого рабочего колеса рис. 9 27 поз. 2 и спирального корпуса поз. 3, закрытого корпусом «масляной» камеры поз. 15.
- 4.1.3. Система влагозащиты двигателя состоит из:
- *комплекта подвижных уплотнений* обеспечивающих двойную герметизацию по валу со стороны гидравлической части двумя торцовыми уплотнениями сильфонного типа или манжетой и торцовым уплотнением.
- *масляной камеры*, обеспечивающей дополнительную преграду на пути проникновения влаги с осуществлением смазки подвижных уплотнений и отвода части тепла от двигателя и подшипников.
- *датичка влаги* обеспечивающего отключение электродвигателя в случае попадания влаги сверх нормы в масляную камеру насоса (в исполнении насоса 016; -026).

- *комплекта неподвижных уплотнений* обеспечивающих герметичность стыков внутренних полостей насоса резиновыми кольцами круглого сечения и герметичность по наружной изоляции кабелей резиновыми уплотнениями специальной формы.
- 4.1.4. Система термозащиты двигателя состоит из:
- термодатчиков встроенных в статор, обеспечивающих отключение электродвигателя в случае его перегрева.
- 4.1.5. Шкаф управления обеспечивает:
- подключение электродвигателя насоса к питающей сети без дополнительной защитно-пусковой аппаратуры.
- информирование текущего состояния насоса («сеть», «работа», «авария» и т.д.).
- защиту силовых цепей электродвигателя и цепей управления от коротких замыканий и перегрузок по току.
- отключение электродвигателя при перегреве.
- отключение электродвигателя при попадании влаги в масляную камеру насоса (только для насосов со способом защиты двигателя 6 (см. усл. бозначение)).
- отключение электродвигателя при обрыве фаз (в исполнении шкафа с устройством контроля фаз УКФ-4).
- запрет на включение при плохой изоляции обмоток двигателя.
- отключение электродвигателя при несоответствии напряжения питающей сети заданным нормам или при неправильном порядке фаз (в исполнении шкафа с устройством контроля фаз УКФ-4).
 - Общие виды шкафов управления показаны на рис. 47, 48, монтажные схемы на рис. 49 52 принципиальные схемы подключения на рис. 53 56.
- 4.1.6. *Поплавковый выключатель* рис. 9 27 поз. 7 служит для автоматического включения и выключения насоса на заданных уровнях перекачиваемой жидкости.
- 4.1.7. Дополнительные устройства.
 - 1) Опускное устройство служит для механизации подсоединения и отсоединения насоса от трубопровода. Состоит из опорного соединителя рис. 28 46 поз. 2, фланцевого нагнетательного патрубка поз. 1 и кронштейна поз. 4.
 - 2) Направляющие поз. 3 служат для перемещения насоса в вертикальном направлении до сцепления опорного соединителя и фланцевого нагнетательного патрубка.

5. ПОДГОТОВКА К РАБОТЕ

При приемке насоса проверьте:

- 1) Комплектность поставки;
- 2) Наличие гарантийных пломб меток на торцах болтов.
- 5.1. Меры безопасности при подготовке агрегата к работе.
- 5.1.1. При погрузке, разгрузке и перемещении насоса должны соблюдаться требования ГОСТ12.3.020-80.
- 5.1.2. Насос следует перемещать только за рым болты (ручку). При транспортировке насоса в упаковке, использовать приложенную стропу.
- 5.1.3. При испытаниях и эксплуатации насосов должны быть учтены требования ГОСТ Р 52743-2007. Эксплуатация должна производиться в соответствии с «Правилами технической эксплуатации электроустановок потребителями» и

«Правилами техники безопасности при эксплуатации электроустановок потребителем».

- 5.1.4. В соответствии с требованиями ГОСТ Р МЭК 60204-1-2007 после монтажа агрегата и установки всех электрических соединений (перед включением агрегата в работу) проверить цепь защиты на непрерывность, пропуская через неё ток от 0,2А до 10А, имеющего напряжение холостого хода 24В переменного или постоянного тока. Результаты испытаний должны быть соизмеримы с расчетными данными по сечениям, длине и материалу проводников в соответствующих цепях защитного заземления.
- 5.1.5. При монтаже и эксплуатации агрегата сопротивление изоляции измеренное при 500 В постоянного тока между проводами силовой цепи и цепи защиты не должно быть менее 1 МОм.
 - 5.2. Подготовка к монтажу
- 5.2.1 Монтаж и наладку электронасоса производить в соответствии с настоящим руководством по эксплуатации.
- 5.2.2. После доставки агрегата на место установки необходимо освободить его от упаковки, убедиться в наличии заглушек на входном и выходном патрубках и сохранности консервационных и гарантийных пломб, проверить наличие эксплуатационной документации.
- 5.2.3. Удалить консервацию со всех наружных поверхностей насоса и протереть их ветошью, смоченной в керосине или уайт-спирите.

Расконсервация проточной части насоса не производится, если консервирующий состав не оказывает отрицательного влияния на перекачиваемый продукт.

- 5.3 Монтаж.
- 1) Расконсервируйте насос путём снятия заглушек входа и выхода гидравлической части, удаления упаковки с концов кабелей.
- 2) Проверьте наличие масла в масляной камере (см. таблицу 7), для этого нужно придать насосу горизонтальное положение, вывернуть пробку (поз.8 рис. 9 27), слить масло. Убедиться в необходимом количестве по объёму, залить масло в полость масляной камеры;
- 3) Проверьте соответствие напряжения в сети напряжению, указанному на табличке насоса;
- 4) Аккуратно произведите контрольное прокручивание рабочего колеса насоса от руки на 1-2 оборота. Вращение должно происходить без заеданий, заклиниваний, посторонних шумов, с незначительным усилием.
- 5) Установить агрегат на заранее подготовленный фундамент, выполненный в соответствии со строительными нормами.

6. ИСПОЛЬЗОВАНИЕ НАСОСА

6.1. Пуск насоса.

Произведите подключение к электросети согласно маркировке на концах кабелей в соответствии с приведенными монтажными схемами рис. 53 - 56.

ВНИМАНИЕ! Шкаф управления и насос должны быть надежно заземлены. Отсутствие надежного заземления приведет к аварийному отключению насоса.

На рис. 53 - 56 приведены принципиальные схемы подключения насосов при использовании одноуровневых поплавков. При использовании двухуровневого поплавка (с регулируемым гистерезисом) замыкающий контакт такого поплавка подключается к клеммам « B_1 » и « B_2 » клеммника X4. Клеммы « O_1 » и « O_2 » остаются свободными.

В положении «Автомат» насос включается и отключается в зависимости от уровня откачиваемой жидкости, который отслеживается поплавками («ДБ1» и «ДБ2») при одноуровневых поплавках или «ДБ» (датчик бака) при двухуровневом поплавке. В положении «Ручное» насос включается и отключается кнопками «Пуск» и «Стоп».

- 1) Переведите рычаг переключателя «Ручное»/«Автомат» рис. 47, 48 поз.6 в нужное Вам положение:
- положение переключателя «Автомат» переводит электронасос в автоматическое управление при котором регулирование уровня откачиваемой жидкости производиться с помощью поплавковых (-ого) выключателей (-ля).

ВНИМАНИЕ! При этом насос запустится в работу, если датчики бака (поплавковые выключатели) выдают сигнал на включение насоса.

- положение переключателя «Ручное» переводит управление электронасосом в ручной режим.
- 2) Запуск насосов с мощностью электродвигателя более 3 кВт без устройства плавного пуска необходимо производить в ручном режиме следующим образом:
 - откройте задвижку на нагнетании и заполните насос рабочей жидкостью;
 - закройте задвижку на нагнетании;
- нажмите кнопку "Пуск" рис. 47, 48 поз.4, запустится двигатель, загорится светодиод "Работа" на дверце шкафа управления поз. 2;
- после создания насосом напора постепенно откройте задвижку на нагнетании, установив заданный режим работы.

ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ ЗАПУСК НАСОСА

при открытой задвижке на напорном трубопроводе.

- 3) При аварийном отключении устройства необходимо определить причину отключения в соответствии с пунктами таблиц 4 и 5 «Возможные неисправности и способы их устранения» и принять решение о возможности дальнейшей эксплуатации насоса.
- 4) Для обеспечения работы в автоматическом режиме с помощью поплавковых выключателей (ДБ1, ДБ2), необходимо установить уровни откачиваемой жидкости и перевести переключатель «Ручное»/«Автомат» рис. 47, 48 поз.6 в положение «Автомат».

ВНИМАНИЕ! При работе электронасоса (мощностью свыше 3кВт) в автоматическом режиме необходимо обеспечить условия для плавного запуска и останова электродвигателя насоса. Рекомендуется применение устройств плавного пуска (УПП) или частотно-регулируемого приводов (ЧРП), или других устройств.

- 6.2. Порядок контроля работоспособности насоса.
- 6.2.1. Переведите рычаг автоматического выключателя в верхнее положение, при этом на дверце шкафа управления загорится светодиод «Сеть» рис. 47, 48 поз. 1 и светодиод «Сеть» на устройстве защиты двигателя (УЗД-8Р), через 2-3 сек. на УЗД-8Р загорится светодиод "Работа", остальные светодиоды на УЗД-8Р не светятся.
- 6.2.2. Расположите насос таким образом, чтобы было обеспечено визуальное наблюдение за вращением рабочего колеса. Запустите насос на 2...3 секунды последовательным нажатием кнопок «Пуск» рис.47, 48 поз.4 (загорается светодиод «Работа» поз.2) и «Стоп» поз.5, и внимательно наблюдая за вращением рабочего колеса, определить его направление. Рабочее колесо должно вращаться по направлению стрелки, изображенной на корпусе спиральном.

ВНИМАНИЕ! Неправильное направление вращения вала (против стрелки) приводит:

- к нерасчётным радиальным нагрузкам на рабочем колесе, которые вызывают изгибающий момент вала, под действием которого происходит разрушение сопрягаемых поверхностей рабочего колеса и корпуса спирального, и в конечном итоге к излому вала:
- к существенному снижению КПД насоса;
 - к перегрузке электродвигателя и выходу насоса из строя.

Для изменения направления вращения электродвигателя насоса следует поменять местами две из трех жил питающего кабеля рис. 47, 48 поз.8 на клеммнике X1 рис. 49 - 52 в шкафах управления.

Если используется шкаф управления с устройством кондиционности фаз УКФ-4 необходимо сделать следующее:

По устройству кондиционности фаз УКФ-4 проверьте правильность подключения шкафа управления к питающей сети:

- если светится индикатор «Норма», то питающая сеть имеет нормальные параметры и электронасос готов к работе;
- если светится индикатор «Фазы», то необходимо отключить напряжение и поменять местами любые две фазы питающего кабеля (см. выше), после чего повторить проверку правильности подключения шкафа управления к питающей сети.
- если светится индикатор «Напр», то необходимо при помощи вольтметра проверить напряжение на всех трёх фазах и устранить отклонение напряжения от заданных параметров;
- если не светится ни один индикатор, возможны две причины: оборван нейтральный провод, либо нет напряжения на фазе «А» (фаза «А» используется для питания УКФ-4).
 - 6.3. Возможные неисправности и способы их устранения.

Перечень возможных неисправностей с указанием причин, а также способы быстрого и простого их выявления и устранения приведен в таблицах 4, 5.

Обозначение состояния светодиодов:

- - символ состояния «светодиод не горит»;
- О- символ состояния «светодиод горит»;
- O/●- символ состояния «светодиод мигает».

ВНИМАНИЕ:

- любое другое состояние сигнальных светодиодов неустранимое повторным запуском насоса свидетельствует о сбое в работе УЗД, требующее ремонта шкафа управления на заводе изготовителе;
- выполнение работ, где возникает необходимость срывать гарантийную пломбировку, следует выполнять после истечения срока гарантии.

Возможные неисправности и способы их устранения (для насосов «Иртыш» исполнения -016, -026).

Таблица 4.

Состояние	Состояние светодиодов на шкафу управления		одов фу	Возможная причина	Ваши действия		
насоса	Сеть	Работа	Авария	Бозможная при типа	Ваши денетыя		
1	2	3	4	5	6		
1. насос не включается,	•	•	•	Перерыв в подаче электроэнергии, обрыв цепи	а) проверьте подачу электроэнергии и напряжение сети; проверьте цепь		
отключается во время работы;	0	•	0*	Питания; Сработало устройство защиты двигателя УЗД-8Р (тип аварии уточняется по индикации на УЗД-8Р, см. таблицу 5) 1) перегрев термодатчика электродвигателя: а) перегрузка электродвигателя (работа насоса не в рабочей зоне); б) заклинивание рабочего колеса; в) температура перекачиваемой среды ≥ 50℃°; г) неисправность электродвигателя. 2) Вода на датчике влаги: 3) Нарушение изоляции обмоток статора относительно корпуса электродвигателя. 4) Обрыв/замыкание датчика температуры. 5) Замыкание датчика влажности. Сработало устройство кондиционности фаз УКФ-4 (для шкафов управления Иртыш от 11 до 55кВт)	а) привести рабочие характеристики насоса в норму; б) прочистите зону рабочего колеса и корпуса спирального; в) см. раздел 2. настоящего паспорта; г) произведите ремонт на заводе-изготовителе. 2) просушить (продуть сжатым воздухом) внутреннюю полость масляной камеры до удаления следов влаги; 3) Обратитесь на завод-изготовитель. 4) Проверьте кабель насоса на наличие повреждений. Проверьте правильность подключения кабеля насоса к шкафу управления. 5) Выполните мероприятия указанные в п. 2 «Вода на датчике влаги» Проверьте кабель насоса на наличие повреждений. 6) Проверьте кабель насоса на наличие повреждений. Проверьте кабель насоса на наличие повреждений. Проверьте надежность заземления шкафа управления.		

	0	•	•	Некондиционная питающая сеть (для шкафов управления Иртыш от 4 до 11кВт);	Привести питающую сеть в норму;		
2.насос отключился-				а) нарушено питание насоса- отсутствие одной или двух фаз;	а) устраните нарушение и запустите насос повторно;		
сработал автоматически й	•	•	•	•	•	б) неисправность цепи питания шкафа или электродвигателя;	б) устраните неисправность или отправьте насос на завод- изготовитель;
выключатель;				в) заклинивание рабочего колеса;	в) прочистите зону рабочего колеса;		
3.низкая производитель	0	0		а) неправильное направление вращения рабочего колеса;	а) см. раздел 6.4. настоящего паспорта;		
ность насоса.))		б) засорение проточной части насоса;	б) прочистить проточную часть насоса, разобрав насосный узел;		
4.посторонний шум, повышенная вибрация	0	0	•	Износ подшипников.	Заменить изношенные подшипники.		
5. утечка выше нормы через	0	0		а) давление на входе в насос выше допустимого;	а) отрегулировать давление на входе в насос;		
торцовое уплотнение.))		б) износ торцового уплотнения.	б) заменить торцовое уплотнение.		
6. уровень воды упал; насос работает.	0	0	•	Неисправность в поплавковом выключателе	Замените поплавковый выключатель.		
7. уровень воды вырос;	0	0		а) неисправность в поплавковом выключателе	а) замените поплавковый выключатель.		
насос не включился	J)		б) обрыв цепи поплавкового выключателя	б) устраните обрыв		

^{*} При нажатии на кнопку "пуск" в ручном режиме или при верхнем положении поплавков в автоматическом режиме.

Возможные состояния светодиодов и состояние насоса (для насосов «Иртыш» исполнения -016, -026).

Таблица 5.

				таолица 5.	
	Состояние светод	иодов на УЗД-81)		
Индикатор "Перегрев"	Индикатор "Вода"	Индикатор "Изоляция"	Индикатор "Датчик"	Состояние насоса	
1	2	3	4	5	
	Пр	оимеры индикац	ии при одиноч	ных авариях	
•	•	•	•	Неисправностей нет	
0	•	•	•	Перегрев термодатчика	
•	0	•	•	Вода на датчике влаги	
•	•	0	•	Нарушена изоляция обмоток статора относительно корпуса насоса	
•	•	•	0	Невозможное состояние. Изделие неисправно.	
0	•	•	0	Замкнут датчик температуры.	
•	0	•	0	Замкнут датчик влажности.	
•	•	0	0	Невозможное состояние. Изделие неисправно.	
			T		
0/●	•	•	0/●	Оборван датчик температуры.	
•	0/●	•	0/●	Оборван датчик влажности. Шкаф управления не заземлен	
	Примеры и	индикации при н	ескольких одн	овременных авариях	
0	0	0	•	Вода на датчике влажности. Перегрев термодатчика. Нарушена изоляция обмоток статора относительно корпуса насоса.	
0/●	0/●	•	0/●	Оборваны датчики температуры и влажности.	
O/ ●	0	•	0/●	Оборван датчик температуры. Вода на датчике влажности.	
0/•	0	•	0	Оборван датчик температуры. Замыкание датчика влажности.	
	•	Неодноз	начная ситуаці		
0	0	любое	0	Перегрев термодатчика. Замыкание датчика влажности. Вода на датчике влажности.	
			_	Замыкание датчика температуры. Замыкание датчика влажности. Замыкание датчика температуры.	

- 6.4. Меры безопасности при работе насоса.
- 6.4.1. Шкаф управления должен быть защищен от попадания влаги.
- 6.4.2. Корпус шкафа управления должен быть надежно заземлен.
- 6.4.3. ЗАПРЕЩЕНО поднимать и переносить работающие электронасос и шкаф управления.

Категорически запрещается подъем, перенос и опускание насоса за кабель. Насос следует перемещать только за рым - болты (ручку).

Категорически запрещается эксплуатация насоса без шкафа управления, непосредственно от сети.

- 6.4.4. При выполнении любых ремонтных работ с электронасосом серии «Иртыш» и шкафом управления предварительно отключить шкаф управления от питающей сети.
 - 6.5. Остановка насоса.
- 1) Переведите переключатель «Ручное»/«Автомат» рис. 47, 48 поз.6 в положение "Ручное".
- 2) Остановку насоса с мощностью электродвигателя более 3 кВт без устройства плавного пуска необходимо производить в ручном режиме следующим образом:
 - плавно закройте задвижку на напорном трубопроводе;
- нажмите кнопку «Стоп» рис. 47, 48 поз.5, погаснет светодиод «Работа» поз. 2, на дверце шкафа управления.

ВНИМАНИЕ! Не допускается работа насоса при закрытой напорной задвижке свыше 2 мин.

3) Переведите рычаг автоматического выключателя в нижнее положение, при этом погаснут все светодиоды на шкафу управления.

7. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Регулярные проверки и планово-предупредительное техобслуживание гарантируют более надёжную работу насоса и шкафа управления.

- 7.1. Рекомендуется производить техническое обслуживание на заводе-изготовителе или в сервисном центре. Адреса приведены на стр. 30 настоящего паспорта.
- 7.2. Эксплуатация.
- 7.2.1. В течение срока гарантийного обслуживания в процессе эксплуатации следует:
- 1) при срабатывании датчика влажности, слить масло из масляной камеры, проверить наличие воды в масле; залить чистое трансформаторное масло ГОСТ 982-80 (или иной руководящий документ на изготовление) объемом, согласно таблицы 7. В случае частого срабатывания датчика влажности (период срабатывания менее 250 часов, в течение которых насос находится в перекачиваемой жидкости) или срабатывание его при отсутствии воды в масляной камере (в масле), насос необходимо отправить на завод-изготовитель для ремонта.
- 2) проверка состояния масла может показать, была ли течь. Если в масле слишком много воды, то причиной тому могут быть:
- недостаточно затянутая пробка корпуса камеры;
- повреждены кольцо резиновое на пробке корпуса камеры или её уплотнительная поверхность в корпусе камеры;
- повреждено торцовое уплотнение.

ВНИМАНИЕ! Если имеется утечка в торцовом уплотнении, то в масляной камере может быть избыточное давление. Необходимо держать ветошь над пробкой корпуса камеры для предотвращения брызг при откручивании пробки.

3) убедится в плотности затяжки зажимов кабелей – проверить, что зажим кабеля затянут до упора.

- 4) не допускать, чтобы кабель имел изгибы менее пяти диаметров кабеля или был пережат посторонними предметами.
- 5) при перерывах в работе насос промыть чистой водой для удаления загрязнений из гидравлической полости насоса;
 - 6) не допускается эксплуатация насоса при наличии льда в проточной части; ЗАПРЕЩАЕТСЯ ПОЛЬЗОВАТЬСЯ ПАЯЛЬНОЙ ЛАМПОЙ

для оттаивания льда в насосе – этим можно повредить резиновые детали.

- 7) Регулярно проверяйте затяжку клемм в шкафу управления перед первым пуском и далее не реже одного раза в месяц.
- 8) При наличии неисправности в шкафу управления обратиться к аттестованному электрику.
- 9) Не реже чем через 720 часов работы проверять шкаф управления и токоподводящий кабель на отсутствие механических повреждений, обрыва заземляющего провода, замыкания на корпус.

Проверка должна производиться аттестованным электриком.

7.2.2. В течение гарантийного и послегарантийного сроков обслуживания:

Осмотр пускателей шкафа управления проводить один раз в месяц. При осмотре проверить:

- внешний вид пускателя, состояние дугогасительной камеры, магнитопровода, контактов;
- состояние присоединительных проводов;
- отсутствие затирания подвижных частей пускателя (вручную);
- состояние затяжки винтов.
- 10) Осмотр автоматических выключателей шкафа управления. Выключатели надо содержать в чистоте, чтобы на них не попадали вода, масло, эмульсия и т.д. Периодически, через каждые 2 тысячи включений, но не реже одного раза в год выключатель нужно осматривать и протирать спиртом подвижные и неподвижные контакты. Осмотр выключателя также нужно производить после каждых двух отключений короткого замыкания. После каждого отключения по току короткого замыкания рекомендуется произвести 8-10 раз операцию «Включение-отключение» без тока. Для того чтобы осмотреть выключатель, необходимо снять крышку, отвинтив крепящие винты.

При осмотре: очистить выключатель от копоти и корольков металла, смазать приборным маслом марки МВП ГОСТ 1805-76 или маслом марки 132-08 (ОКБ-122-5) ГОСТ 18375-73 трущиеся части механизма свободного расцепления и подшипники, расположенные в крайних полюсах, проверить целостность пружин, дугогасительных камер, состояние контактов, проверить затяжку крепежа в местах подсоединения внешних проводников.

- 7.2.3. После истечения срока гарантийного обслуживания.
- 7.2.3.1. Замена рабочего колеса.
- 1) Установить электронасос на опорную подставку, с упором в верхнюю часть насоса, не зажимая кабель, вертикально корпусом спиральным вверх. Для замены износившегося рабочего колеса следует произвести частичную разборку в следующей последовательности:
- 2) Отвернуть метизы рис. 9 27 поз. 16. крепления корпуса спирального поз. 3 с корпусом камеры поз. 15, снять корпус спиральный;

- 3) Отвернуть метизы поз. 10 крепления рабочего колеса с валом электродвигателя;
- 4) Снять рабочее колесо поз. 2;
- 5) Установить шпонку на вал, установить кондиционное рабочее колесо и произвести сборку в обратной последовательности.

ВНИМАНИЕ! Момент затяжки болтовых соединений для насосов «Иртыш» ПД 50/125 – 3/2 в случае переборки насосов при техническом обслуживании не более 12...15 Н*м (1,2...1,5кГс*м). При превышении усилия затяжки возможно разрушение корпуса электродвигателя в месте крепления с корпусом камеры См. выноску Б рис. 13.

7.2.3.2. Замена износившихся нижнего и верхнего торцовых уплотнений (манжеты).

Рекомендуется замену торцовых уплотнений производить на заводеизготовителе или в сервисном центре, с проведением полного объёма работ по испытаниям изделия на герметичность.

1) Установить электронасос горизонтально на твёрдую поверхность, либо горизонтально на весу, так чтобы одна из пробок корпуса масляной камеры была в нижнем положении, отвернуть пробку рис. 9 – 27 поз. 8, слить масло.

Установить электронасос на опорную подставку, с упором в верхнюю опору подшипника, вертикально корпусом спиральным вверх.

Для замены износившихся нижнего и верхнего торцовых уплотнений (манжеты) следует произвести частичную разборку в следующей последовательности:

- 2) Отвернуть метизы поз. 16 крепления корпуса спирального поз. 3 с корпусом камеры поз. 15.
 - 3) Снять корпус спиральный с подставкой поз. 14.

Отвернуть метизы поз. 10 крепления рабочего колеса с валом электродвигателя;

- 4) Снять рабочее колесо поз. 2, при необходимости использовать съёмник;
- 5) Демонтировать подвижную часть нижнего торцового уплотнения поз. 5, при необходимости использовать съёмник;
- 6) Отвернуть метизы поз. 9 крепления корпуса камеры поз. 15 со стаканом подшипника поз. 17 и корпусом электродвигателя поз. 18;

При наличии в конструкции крышки камеры поз. 20:

Отвернуть метизы поз. 19 крепления крышки камеры поз. 20 с корпусом камеры поз. 15;

Снять корпус камеры (крышку камеры), при необходимости использовать съёмник или отжимные болты, совместно с неподвижной частью торцового уплотнения.

Снять съёмником стопорное кольцо перед торцовым уплотнением поз. 4, демонтировать подвижную часть верхнего торцового уплотнения, при необходимости использовать съёмник (демонтировать манжету для насосов «Иртыш» Π Д 50/125 - 3/2 сняв стакан подшипника);

При наличии, снять крышку подшипника, совместно с неподвижной частью торцового уплотнения, при необходимости использовать отжимные болты.

7) Для осмотра полости корпуса электродвигателя на присутствие в нём влаги приподнять ротор со стаканом подшипника, обращая внимание на провода датчика

влажности поз. 13, не допуская их обрыва, отсоединить провода, вынуть ротор со стаканом подшипника;

- 8) При наличии влаги в корпусе электродвигателя и внутренней стороне стакана подшипника протереть ветошью и высушить до полного удаления влаги;
- 9) Убедиться в отсутствии износа пар трения и сильфонов торцовых уплотнений и при необходимости заменить;
- 10) При сборке тщательно очистить посадочные места под неподвижные узлы и вал от твердого налета продукта, очистку производить «до металла», но избегать царапин; при установке допускаются только незначительные осевые усилия, избегайте перекосов.

Установка неподвижного узла торцового уплотнения:

- 11) Смочить посадочное место и Γ образную манжету неподвижной части торцового уплотнения мыльной водой;
- 12) При установке узла в посадочное место необходимо пользоваться оправкой с мягкой наклейкой для обеспечения равномерности усилия и исключения возможности повреждения поверхности пары трения. Перекос неподвижной части торцового уплотнения и местное выдавливание Г-образной манжеты не допускаются.
- 13) Поверхность трения не смазывать, очистить её от грязи, а непосредственно перед установкой протереть безворсовой тканью, слегка смоченной спиртом.

Установка подвижного узла торцового уплотнения:

- 14) Нанести масло трансформаторное на уплотнительную поверхность подвижной части торцового уплотнения. Наличие посторонних частиц в масле и на уплотнительной поверхности подвижной части торцового уплотнения после нанесения масла не допускается. Аккуратно, не повреждая сильфона, через оправку, установить подвижное торцовое уплотнение, предварительно смазав сильфон маслом трансформаторным;
 - 15) Дальнейшую сборку производить в порядке обратном разборке.
- 16) Проверить правильность сборки; для этого необходимо провернуть вал собранного насоса от руки; вал должен проворачиваться с некоторым усилием, но без заеданий.

8. РЕСУРСЫ, СРОКИ СЛУЖБЫ И ХРАНЕНИЯ, КРИТЕРИИ ПРЕДЕЛЬНЫХ СОСТОЯНИЙ.

Показатели надежности насоса при эксплуатации в рабочем интервале характеристики указаны в таблице 6.

Таблица 6

Наименование показателя	Значение
	показателя
Средняя наработка на отказ, ч, не менее	7000
Средний ресурс до главного техобслуживания, ч, не	20000
менее	
Средний срок службы, лет, не менее	6
Среднее время восстановления, ч, не более	8

Примечания

- 1. Показатели надежности агрегата уточняются по сведениям с мест эксплуатации.
- 2. Критерием отказа является нарушение нормального функционирования насоса.

Указанные ресурсы, сроки службы и хранения действительны при соблюдении потребителем требований настоящего руководства по эксплуатации.

Показатели надежности комплектующих изделий по технической документации на эти изделия.

Межремонтные периоды для погружных насосов «Иртыш»:

Технический осмотр -620 часов (но не реже 1 раза в месяц);

Текущее техобслуживание -3330 часов (но не реже 1 раза в год);

Среднее техобслуживание -6660 часов (но не реже 1 раза в 2 года);

 Γ лавное техобслуживание -20000 часов (но не реже 1 раза в 6 лет);

По истечении назначенного ресурса (срока хранения, срока службы) агрегат изымается из эксплуатации и принимается решение о направлении его в ремонт, об утилизации, о проверке и об установлении нового назначенного ресурса (срока хранения, срока службы).

Примерное содержание работ по видам ремонта погружных насосов «Иртыш».

Ежедневный технический осмотр: мониторинг параметров насосов (давление на входе в насос, давление на выходе из насоса, расход, сила тока, напряжение, уровень жидкости и т.д.)

Технический осмотр:

- 1. Обобщение данных мониторинга и сообщение на завод изготовитель;
- 2. Проверка электрических параметров электродвигателя, датчиков насоса;
- 3. Проверка направления вращения, надежность посадки и крепления рабочего колеса;
- 4. Проверка целостности корпуса спирального, без разборки насоса;
- 5. Проверка целостности резиновой оболочки кабеля, проверка изоляции;
- 6. Проверка крепления насоса к раме (к фундаменту), рамы к фундаменту для насосов с рубашкой охлаждения, захватного устройства и направляющих для насосов с опускным устройством.

Текущее техобслуживание:

- 1. Состав работ технического осмотра.
- 2. Проверка уплотнительного зазора м/у рабочим колесом и корпусом спиральным, при необходимости восстановление;
- 3. Оценка внешнего вида на предмет повреждений рабочего колеса и корпуса спирального, проверка размеров посадочных мест, при необходимости восстановление;
- 4. Проверка остаточного дисбаланса, при необходимости динамическая балансировка рабочего колеса;

Среднее техобслуживание:

- 1. Состав работ текущего техобслуживания;
- 2. Оценка состояния резьбовых соединений корпусных деталей;
- 3. Притирка торцовых уплотнений, при необходимости замена торцовых уплотнений;
- 4. Разборка и оценка состояния корпусных деталей изделия, при необходимости восстановление;
- 5. Замена уплотнительных колец по стыкам корпусных деталей агрегата;

- 6. Проверка геометрических размеров посадочных мест под подшипники в корпусных деталях, при необходимости восстановление;
- 7. Оценка состояния подшипников качения, при необходимости замена;
- 8. Замена смазки в подшипниках;
- 9. Замена трансформаторного масла;
- 10. Проверка ротора на биение и его динамическая балансировка.
- 11.Осмотр, проверка геометрических размеров и при необходимости восстановление шпоночных соединений и резьб вала.
- 12.Осмотр, проверка геометрических размеров соединения вала и рабочего колеса, при необходимости восстановление.
- 13. Испытания на герметичность всех стыков изделия, включая кабель;
- 14. Обкатка и опробование насоса в работе.

Главное техобслуживание:

- 1. Состав работ среднего техобслуживания.
- 2. Замена подшипников качения, торцовых уплотнений.
- 3. Калибровка резьбовых соединений, при необходимости восстановление мест поврежденных коррозией.
- 4. Осмотр фундамента, при необходимости ремонт.
- 5. Обкатка и испытание насоса с проверкой паспортных данных

Таблица 7.

Обозначение насоса «Иртыш»	Объем заливаемого масла, мл
ПД 32/125 – 1,1/2	250
ПД 32/160 — 3/2	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈ 800
ПД 32/200 – 5,5/2	
ПД 32/250 – 11/2	2200
ПД 40/200 – 7,5/2	
ПД 40/250 — 15/2	
ПД 40/315 – 30/2	
ПД 50/125.140 — 3/2	250
ПД 50/160 — 4/2	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈700
ПД 50/200 — 11/2	1500
ПД 50/200 — 15/2	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈1800
ПД 50/250 — 22/2	
ПД 50/315 — 37/2	
ПД 65/125 – 5,5/2	
ПД 65/160 – 7,5/2	1200
ПД 65/200 — 18,5/2	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈1500
ПД 65/200 — 22/2	
ПД 65/250 — 37/2	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈3200
ПД 80/125 — 11/2	
ПД 80/160 — 11/2	900

ПД 80/160 — 15/2	
ПД 100/200 — 45/2	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈3300
ПД 125/250 — 15/4	3500
ПД 125/315 — 18,5/4	4000
ПД 125/315 — 30/4	4000
ПД 150/250 — 37/4	
ПД 150/250 — 18,5/4	3500
ПД 150/315 — 37/4	
ПД 150/315 — 45/4	До излива из горизонтально расположенного резьбового отверстия корпуса камеры, при вертикальном положении насоса ≈5500
ПД 150/315 — 55/4	Kopinyeu kumopai, npn aopinkumanom nonomenim nueceu - 2000

8.1. Указания по выводу из эксплуатации и утилизации.

Конструкция электронасоса «Иртыш» разработана таким образом, что обеспечивается высокая степень ремонтопригодности. Практически в любом случае агрегат можно восстановить на заводе-изготовителе или в авторизованном сервисном центре до состояния нового насоса. Критерием предельного состояния будет являться экономическая нецелесообразность восстановления работоспособного состояния, когда затраты на ремонт будут составлять значительную часть от стоимости насоса.

В случае непригодности насоса для использования его по назначению производится его утилизация. Решение об утилизации принимает эксплуатирующая организация с учетом рекомендаций завода-изготовителя на основании акта о дефектации агрегата. Все изношенные узлы и детали сдаются в пункты приема вторсырья.

9. ПЕРЕЧЕНЬ КРИТИЧЕСКИХ ОТКАЗОВ В СВЯЗИ С ОШИБОЧНЫМИ ДЕЙСТВИЯМИ ПЕРСОНАЛА

Перечень критических	Возможные ошибочные действия	Действия персонала в
отказов	персонала, приведшие к аварии	случае аварии
Облом конца вала с	Неправильное подключение	Отключить насос –
рабочим колесом	насоса в сеть (перепутаны фазы)	отправить в ремонт
Остановка насоса по		
причине попадания воды:		
в корпус электродвига-	1) Механическое воздействие на	<u>//</u>
теля;	корпус насоса (удар, падение);	
	2) Чрезмерное усилие затяжки	
	болтов, повлекшее разрушение	
	корпусных деталей;	
	3) Использование насоса при	
	отключенных цепях управления;	
в корпус масляной	Работа «на сухую» как следствие	<u>//</u>
камеры;	– выход из строя торцового	
	уплотнения;	

Перегрев двигателя	Отсутствие контроля за уровнем	//
насоса	откачиваемой среды:	

10. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И КОНСЕРВАЦИИ

Насос соответствует техническим условиям ТУ 3631-001-11903018-99, испытан, признан годным к эксплуатации и законсервирован.

Обозначение электронасоса	
Заводской номер	
Дата приемки	
Ответственный за приемку	подпись М.П.
Дата консервации	
Ответственный за консервацию	подпись
Дата реализации ""	20r.

Вариант защиты изделия ВЗ-0 в сочетании с ВЗ-1 и ВЗ-4, вариант внутренней упаковки ВУ-3 в комплексе с ВУ-9 по ГОСТ 9.014-78.

11. ТРАСПОРТИРОВКА И ХРАНЕНИЕ

Насос и шкафы управления транспортируются любым видом транспорта, с соблюдением необходимых мер безопасности и правил перевозок грузов для каждого вида транспорта.

Насос следует перемещать только за рым - болты (ручку). При транспортировке насоса в упаковке, использовать приложенную стропу.

Условия транспортирования насоса в части воздействия климатических факторов – $4 \times 2 \Gamma OCT 15150$ -69, в части воздействия механических факторов – $C \Gamma OCT 23170$ -78.

Насосы при транспортировании рекомендуется устанавливать так, чтобы ось насоса по длине вала была перпендикулярна направлению движения транспорта.

Длительность транспортирования насоса при низких температурах (-30°С÷ -40°С) - не более 30суток, (ниже -40°С) – не более 10суток, с обязательной выдержкой в теплом помещении перед вводом в эксплуатацию, для установления положительной температуры всех узлов насоса.

ВНИМАНИЕ! Размотка кабеля насоса без выдержки в теплом помещении запрещена!

Перед постановкой на хранение насосы очистить от загрязнений, слить воду. Насосы и шкафы управления должны храниться в закрытых помещениях при отсутствии воздействия кислот, щелочей, бензина, растворителей и т. д.

ВНИМАНИЕ! Предохранить силовые и контрольные кабели насосов от повреждений! Запрещается тянуть кабели во избежание появления скрытых дефектов в самих кабелях и в местах их подсоединения с электродвигателем насоса. Концы кабелей насосов должны быть защищены от попадания внутрь влаги.

Хранение в условиях 4Ж2 по ГОСТ 15150-69. В зимний период температура хранения должна быть не ниже - 30° C.

ВНИМАНИЕ! Рабочее колесо насоса следует периодически прокручивать от руки, один раз в месяц, для предотвращения «слипания» пар трения уплотнений друг с другом. Прокручивание рабочего колеса является обязательным.

12. ГАРАНТИЯ ИЗГОТОВИТЕЛЯ

- 12.1. Срок гарантии 12 месяцев с даты отгрузки.
- 12.2. Предприятие-изготовитель гарантирует соответствие характеристики насоса показателям, указанным в разделе 2 (стр.5) настоящего паспорта, надежную, безаварийную работу насоса в рабочем интервале характеристики, безвозмездное устранение в кратчайший технически возможный срок дефектов, а также замену вышедших из строя деталей в течение гарантийного срока по причине поломки или преждевременного износа при соблюдении потребителем правил транспортирования, хранения, монтажа, технического обслуживания и эксплуатации, указанных в настоящем паспорте;
- 12.3. При проведении гарантийного ремонта течение срока гарантии приостанавливается на время проведения ремонта;
- 12.4. Завод-изготовитель может отказать в гарантийном ремонте в случае:
 - Нарушения гарантийного пломбирования;
 - Наличия механических повреждений, дефектов, вызванных несоблюдением правил эксплуатации, транспортировки и хранения;
 - Самостоятельного ремонта или изменения внутреннего устройства;
 - Изменения, стирания, удаления или неразборчивости серийного номера изделия на бирке;
 - Наличия дефектов, вызванных стихийными бедствиями, пожаром и т.д.
 - Применения изделия не по прямому назначению;

Износ торцовых уплотнений не является причиной рекламации.

- 12.5. Претензии принимаются только при наличии оформленного акта-рекламации (или заявления) с указанием проявлений неисправности.
- 12.6. Транспортировка неисправного изделия осуществляется силами Покупателя.
- 12.7. Изделие, передаваемое для гарантийного ремонта должно быть очищено от загрязнений и полностью укомплектовано.

- 12.8. Приведенные выше гарантийные обязательства не предусматривают ответственности за любые прямые или косвенные убытки, потерю прибыли или другой ущерб.
- 12.9. За неправильность выбора насоса предприятие-изготовитель ответственности не несет.
- ВНИМАНИЕ: Перед запуском изделия в эксплуатацию, внимательно ознакомьтесь с Инструкцией по эксплуатации и другими правилами и нормативными документами, действующими на территории РФ. Нарушение требований этих документов влечет за собой прекращение гарантийных обязательств перед Покупателем.

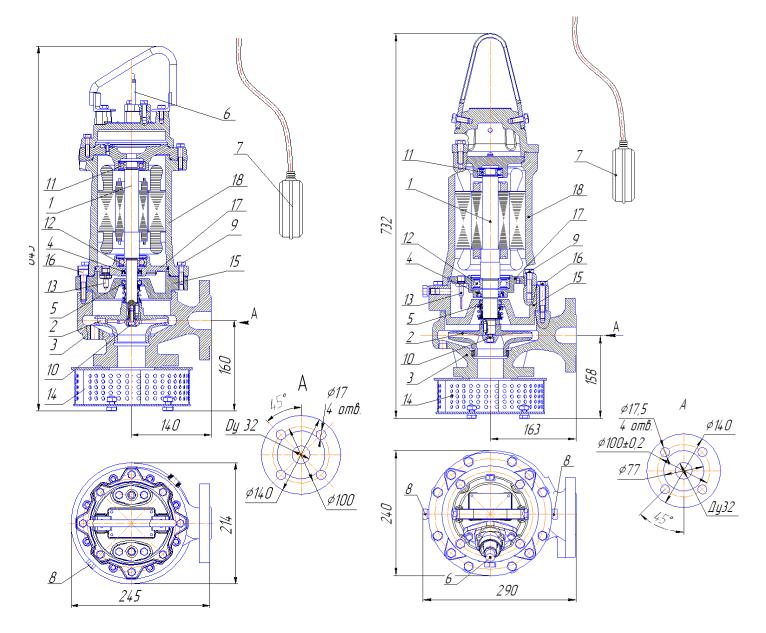


Рис. 9 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 32/125 — 1,1/2

Рис. 10 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 32/160 – 3/2

1. Электродвигатель; 2. Колесо рабочее; 3. Корпус спиральный; 4. Торцовое уплотнение (манжета); 5. Торцовое уплотнение; 6. Встроенный кабель (-ли); 7. Поплавковый выключатель; 8. Пробка масляной камеры; 9. Метизы крепления корпуса камеры и стакана подшипника к корпусу электродвигателя; 10. Метизы крепления колеса рабочего (с шайбой); 11. Подшипник; 12. Подшипник (-ки); 13. Датчик влажности; 14. Подставка-фильтр; 15. Корпус камеры; 16. Метизы крепления корпуса камеры (корпуса электродвигателя для насосов «Иртыш» ПД 50/125 — 3/2) к корпусу спиральному; 17. Стакан подшипника; 18. Корпус электродвигателя; 19. Метизы крепления крышки камеры к корпусу камеры; 20. Крышка камеры.

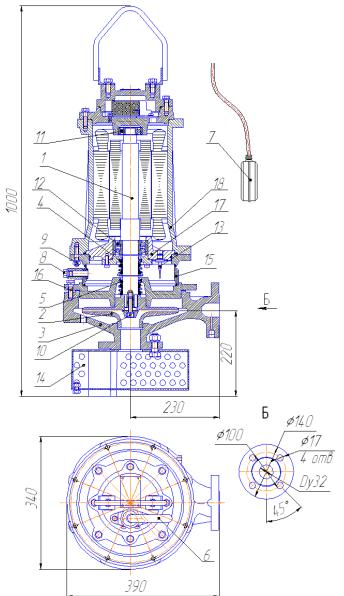


Рис. 11 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 32/250 – 11/2 "Иртыш" ПД

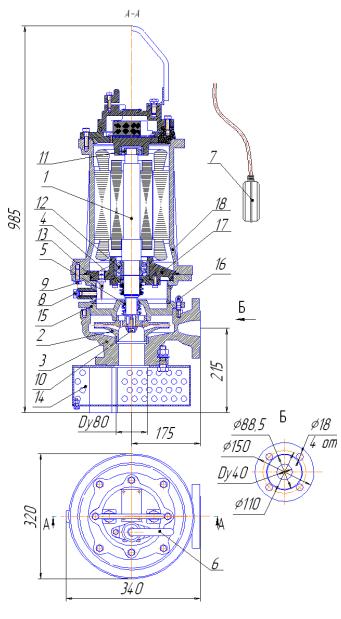


Рис. 12 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 40/200 – 7,5/2

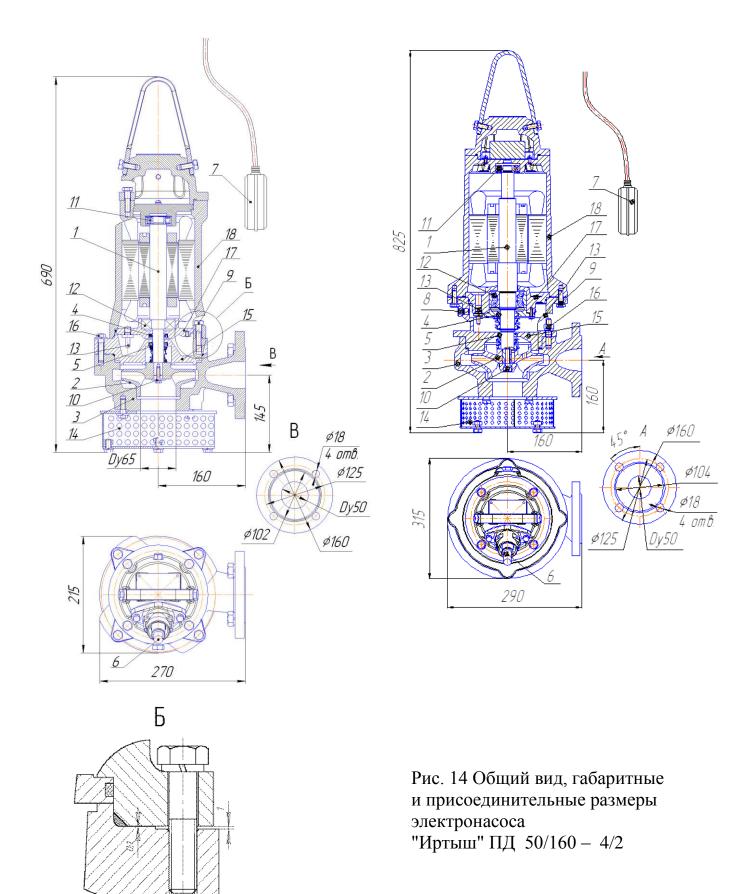


Рис. 13 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 50/125 — 3/2

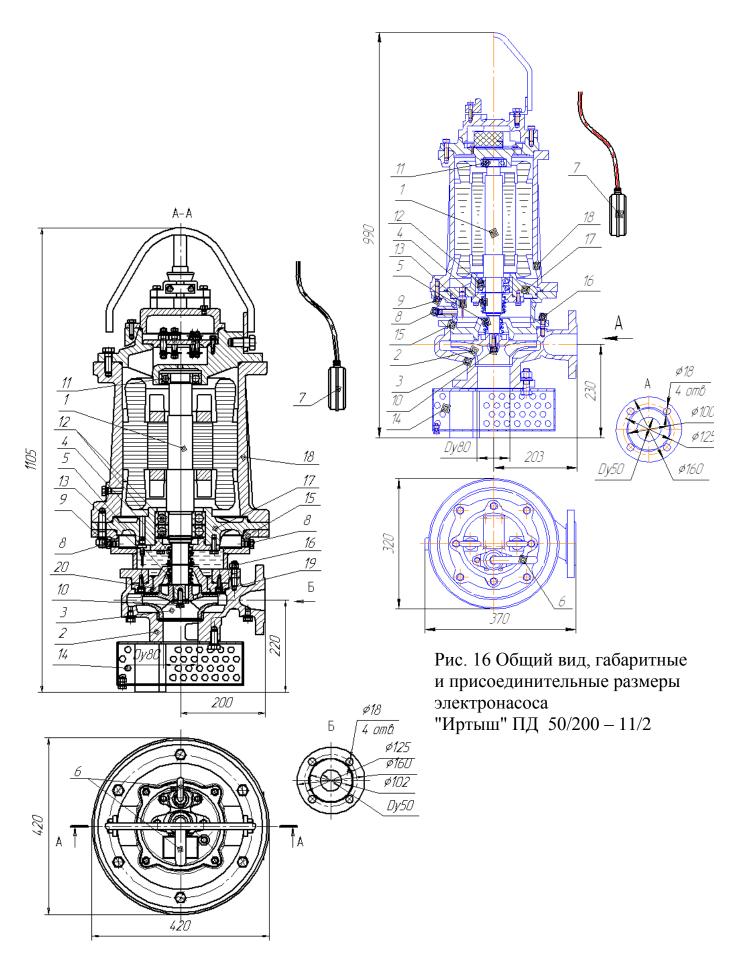


Рис. 15 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 50/200 – 15/2

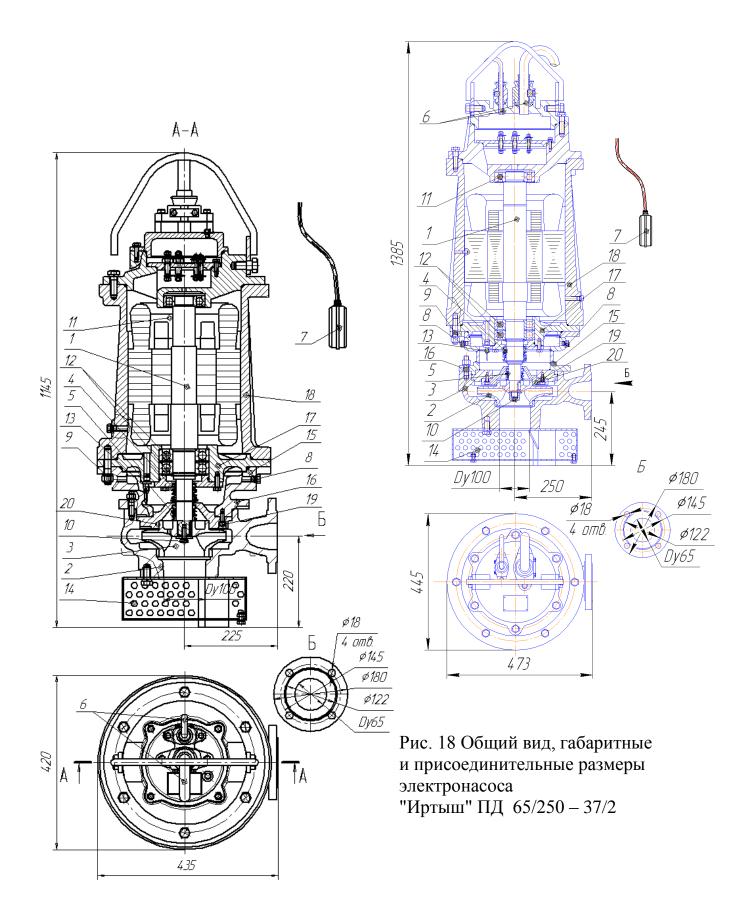


Рис. 17 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 65/200 - 18,5/2; ПД 65/200 - 22/2.

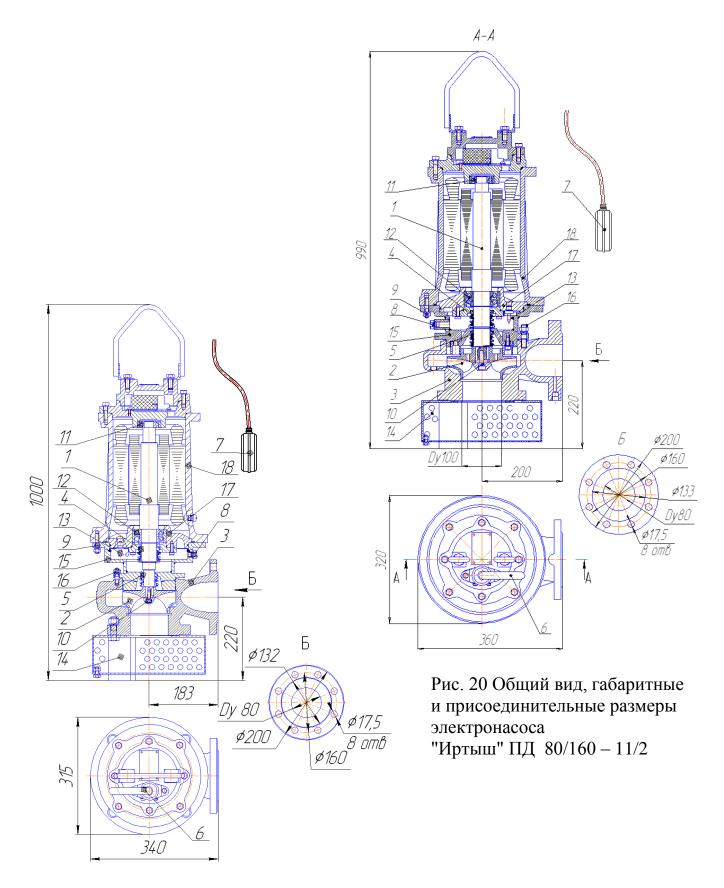


Рис. 19 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 80/125 – 11/2

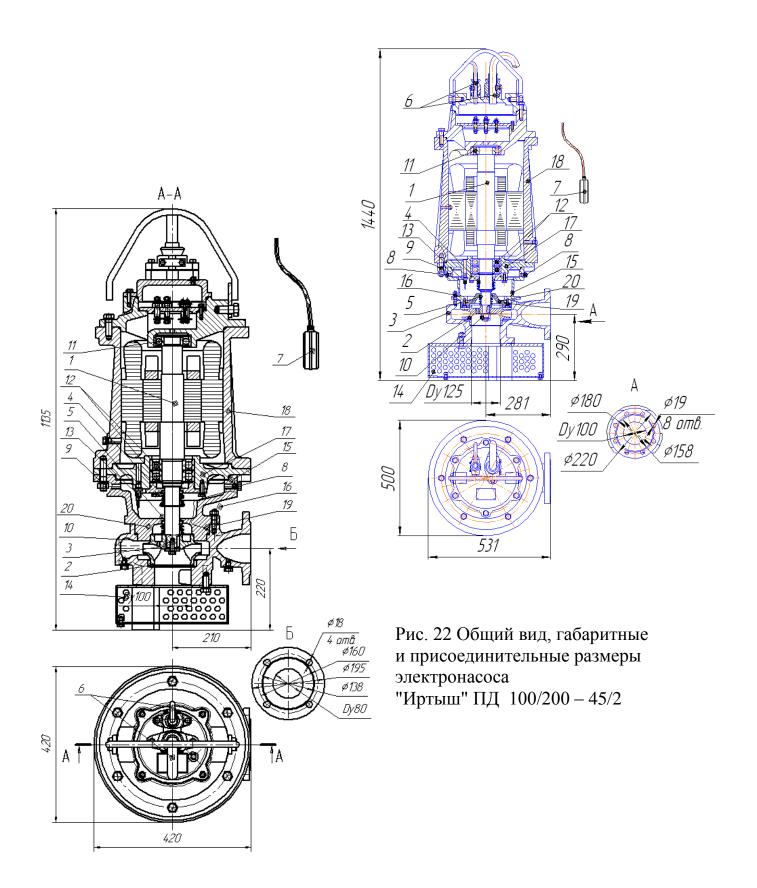


Рис. 21 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 80/160 – 15/2

			A – A
	Обозначение насоса «Иртыш»	L	
	ПД 125/315 — 18,5/4	1255	
	ПД 125/315 — 30/4	1345	
1220	A-A 11 12 4 5 18 17 15 8 8 8 20 19 10 20 20 20 20 20 20 20 20 20		Рис. 24 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 125/315 — 18,5/4 ПД 125/315 — 30/4

Рис. 23 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 125/250 – 15/4

5

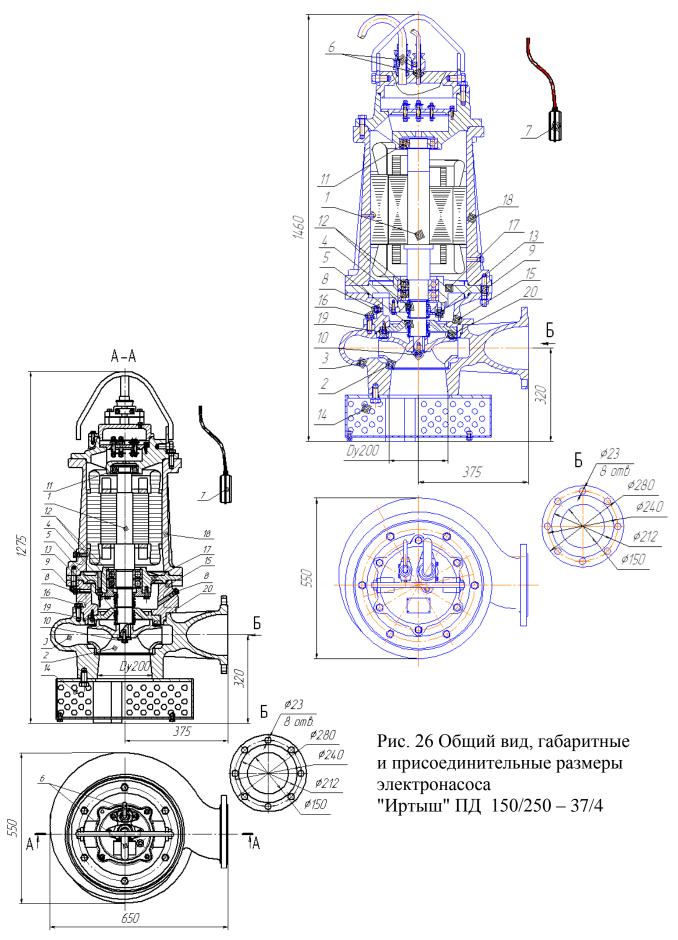


Рис. 25 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 150/250 – 18,5/4

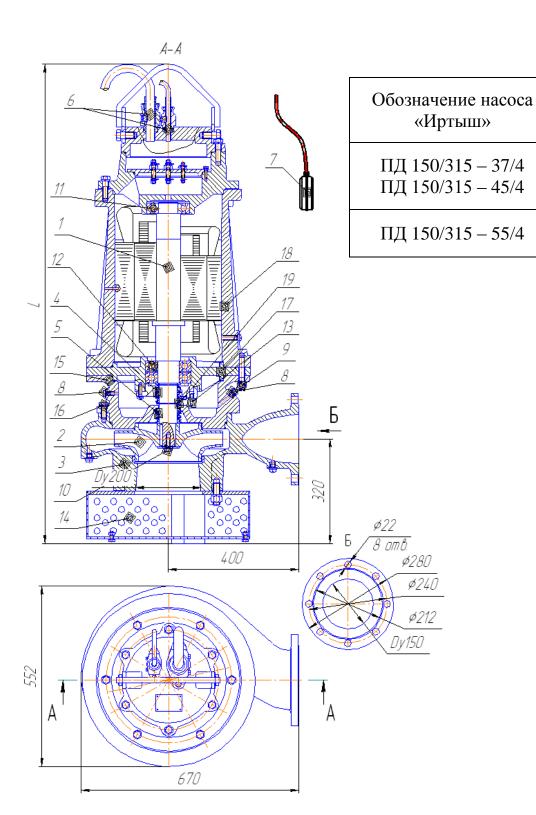


Рис. 27 Общий вид, габаритные и присоединительные размеры электронасоса "Иртыш" ПД 150/315 – 37/4;

ПД 150/315 – 45/4;

 Π Д 150/315 - 55/4.

L

1470

1525

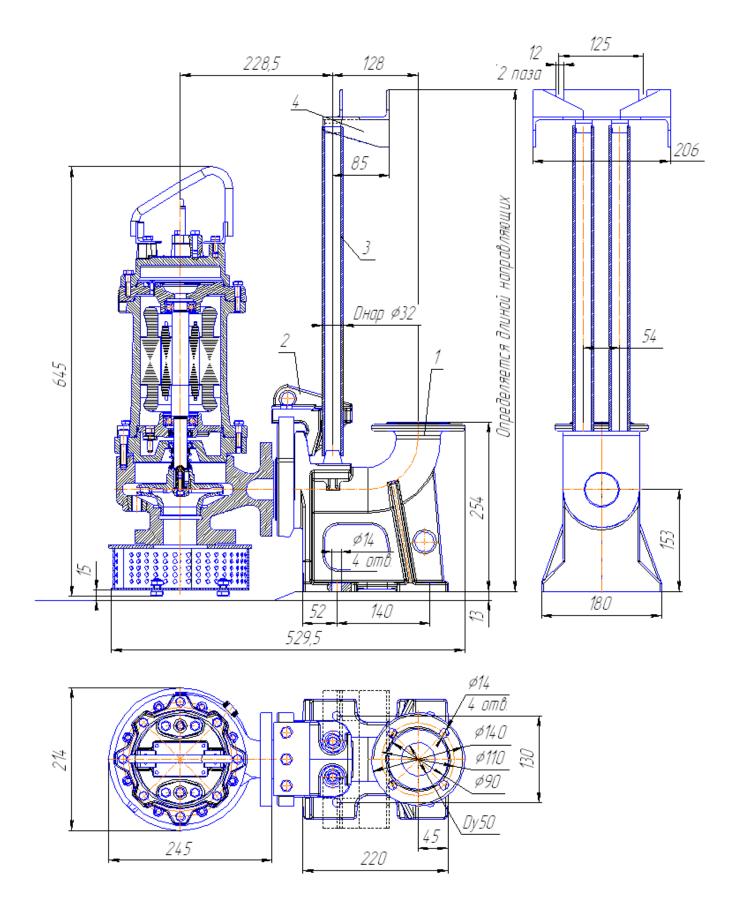


Рис. 28 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 32/125 - 1,1/2 с опускным устройством.

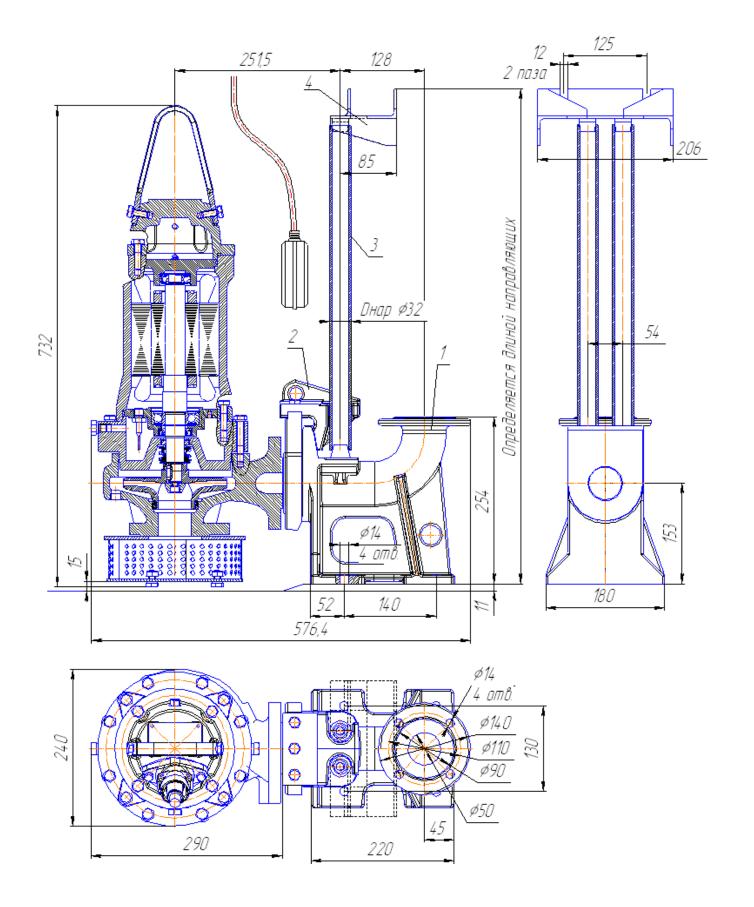


Рис. 29 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 32/160 - 3/2 с опускным устройством.

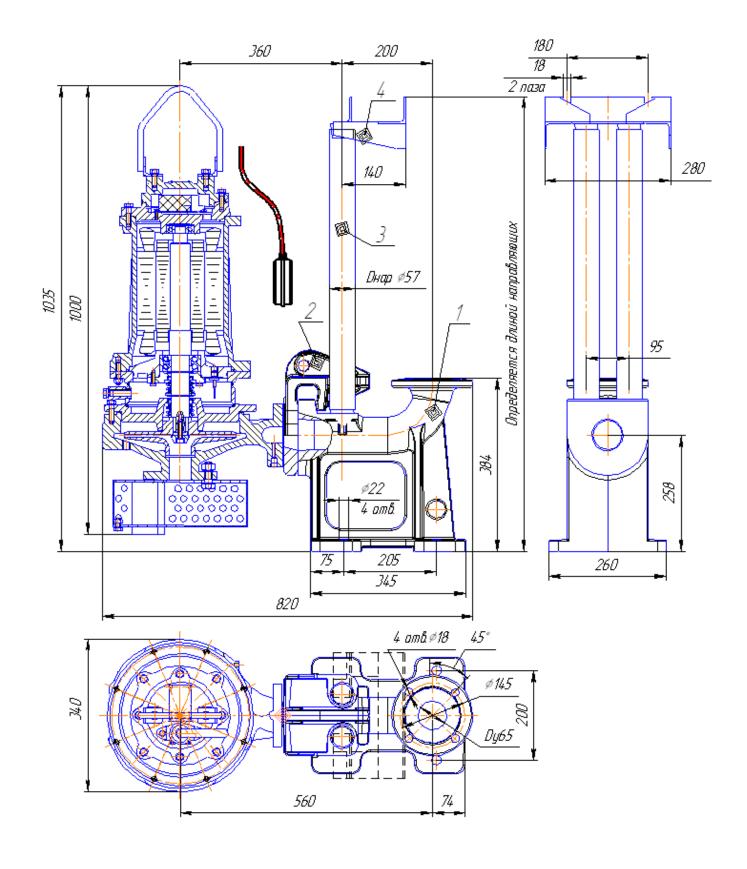


Рис. 30 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 32/250 - 11/2 с опускным устройством.

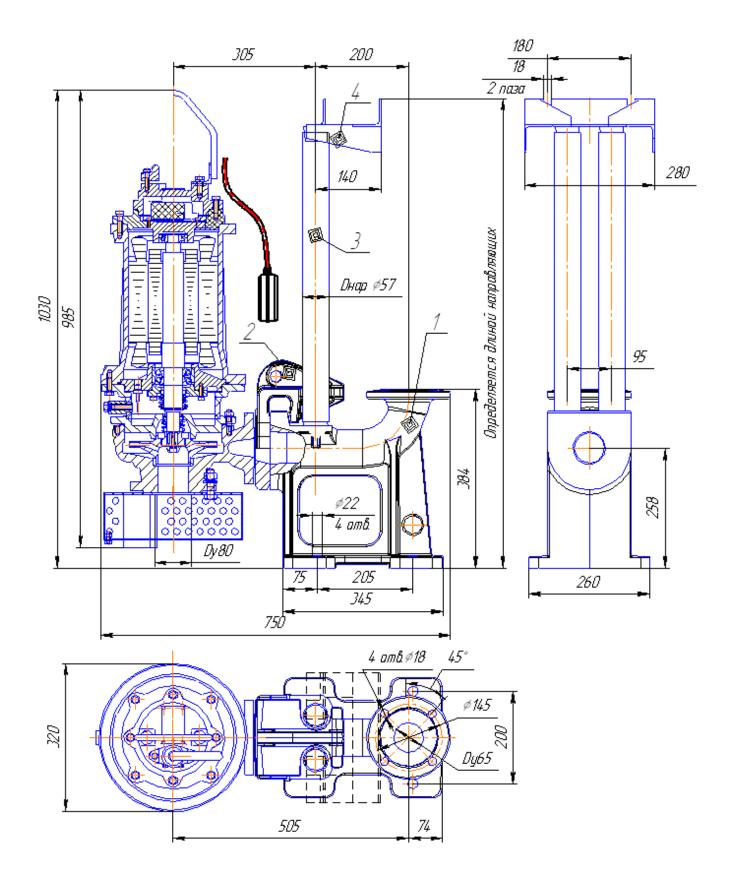


Рис. 31 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 40/200 - 7,5/2 с опускным устройством.

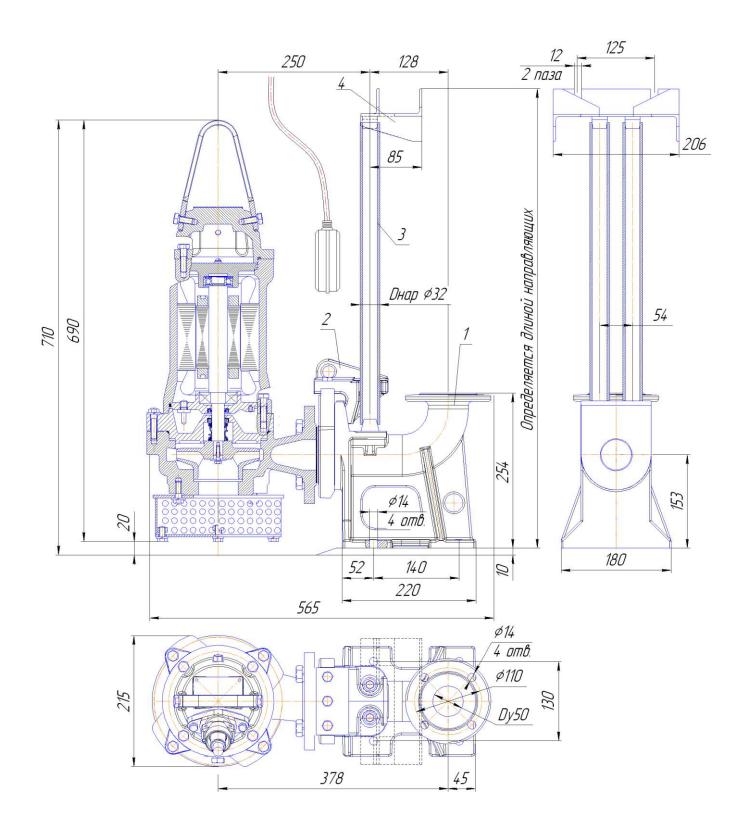


Рис. 32 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 50/125-3/2 с опускным устройством.

- 1. Фланцевый нагнетательный патрубок; 2. Опорный соединитель; 3. Направляющие; 4. Кронштейн.

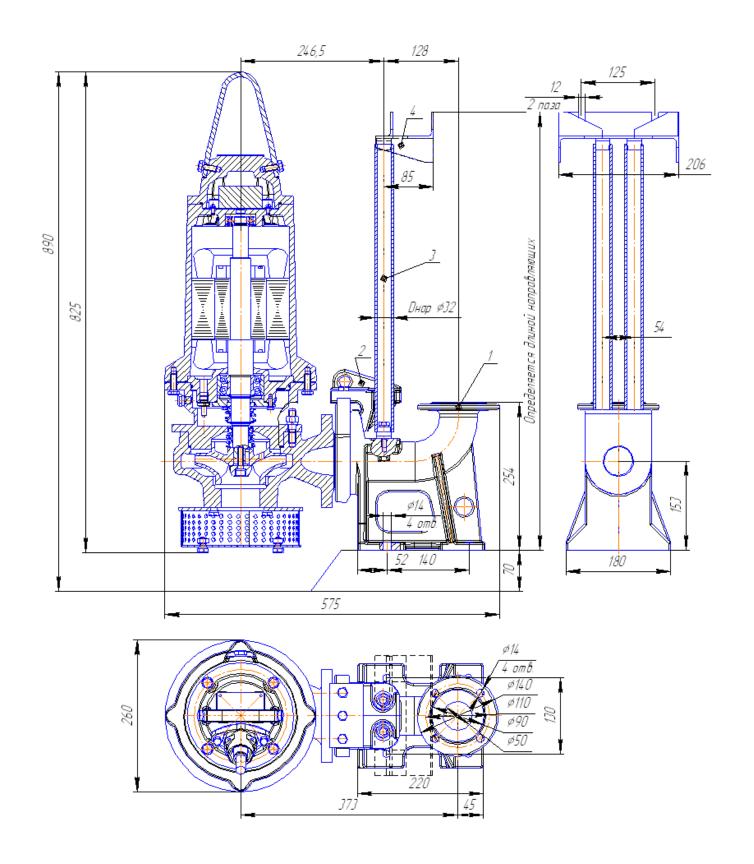


Рис. 33 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 50/160 - 4/2 с опускным устройством.

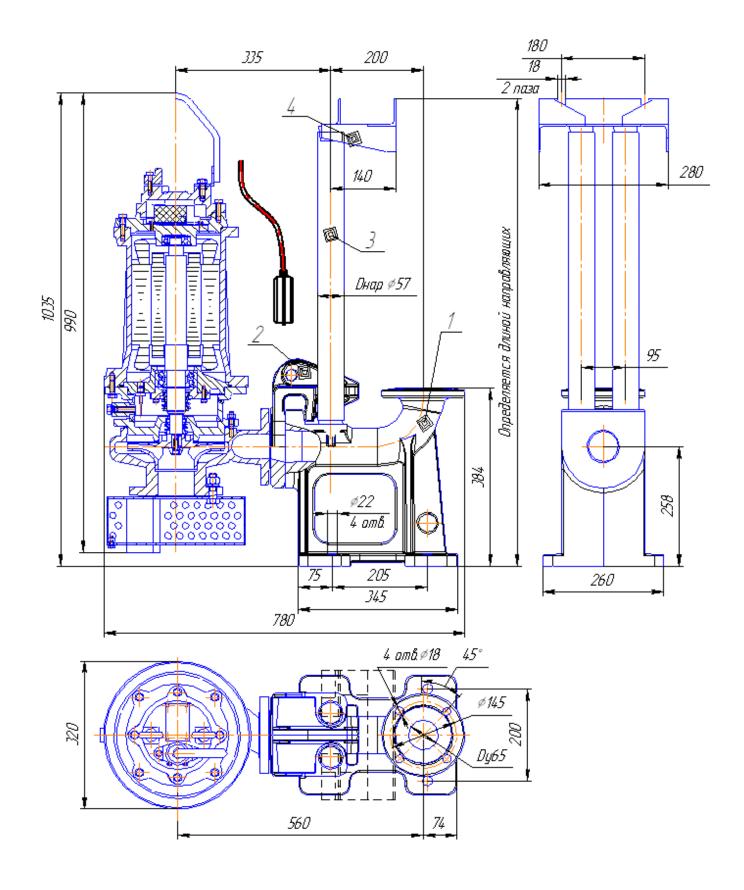


Рис. 34 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 50/200-11/2 с опускным устройством.

- 1. Фланцевый нагнетательный патрубок; 2. Опорный соединитель;
- 3. Направляющие; 4. Кронштейн.

Рис. 35 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 50/200-15/2 с опускным устройством.

- 1. Фланцевый нагнетательный патрубок; 2. Опорный соединитель;
- 3. Направляющие; 4. Кронштейн.

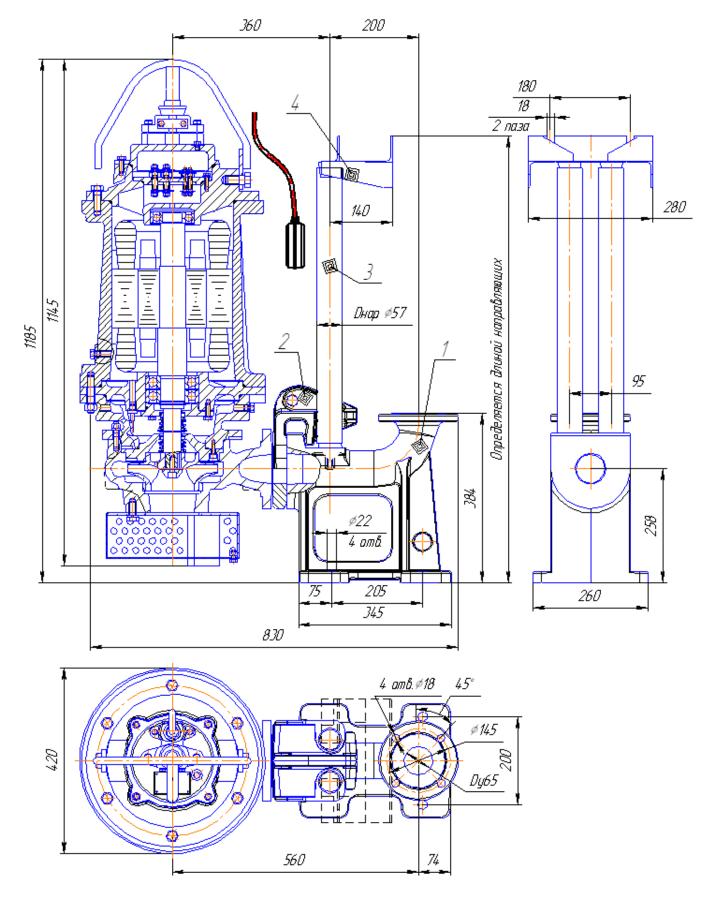


Рис. 36 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 65/200-18,5/2, ПД 65/200-22/2 с опускным устройством.

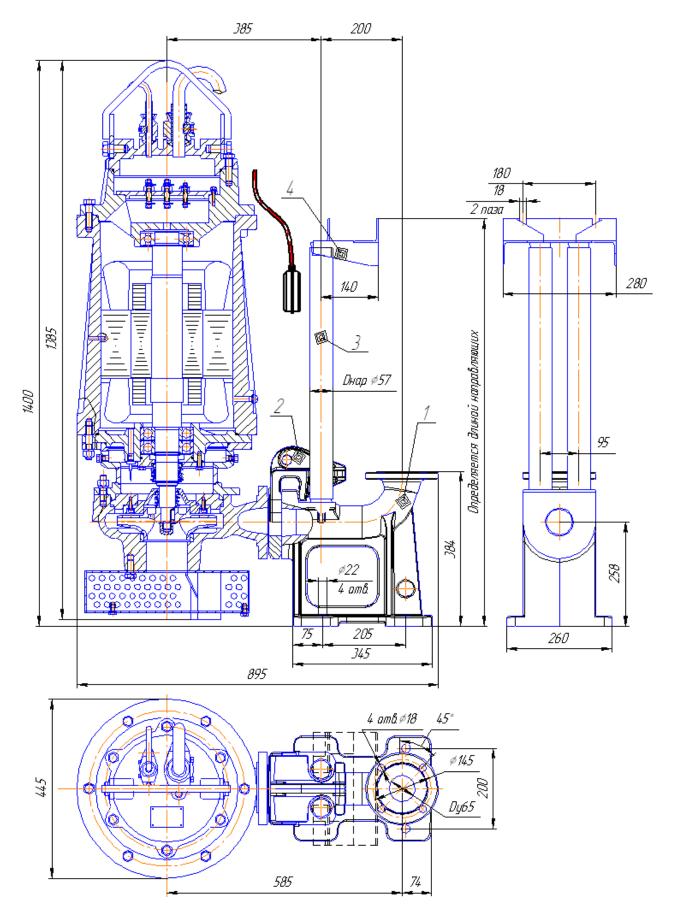


Рис. 37 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 65/250 - 37/2 с опускным устройством.

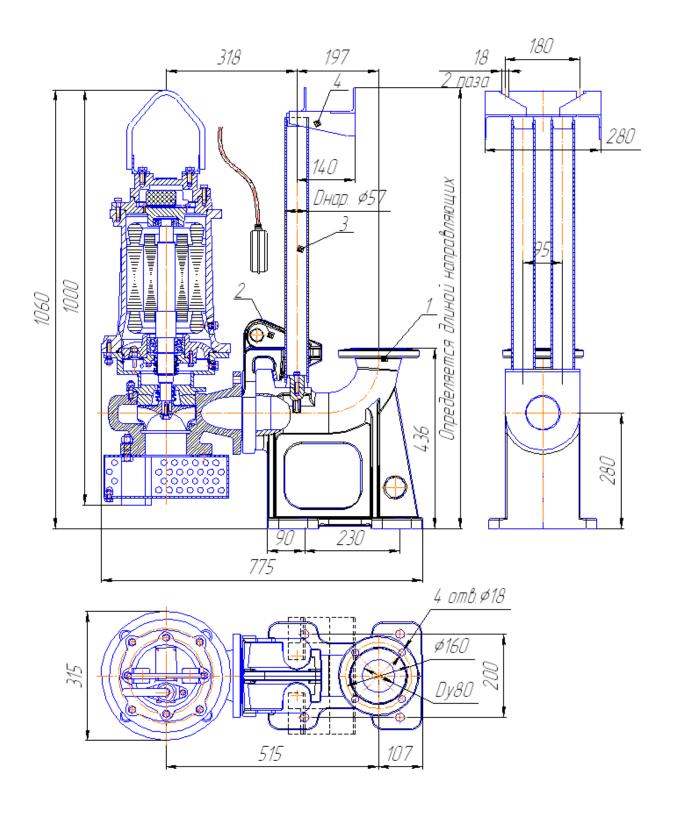


Рис. 38 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 80/125 - 11/2 с опускным устройством.

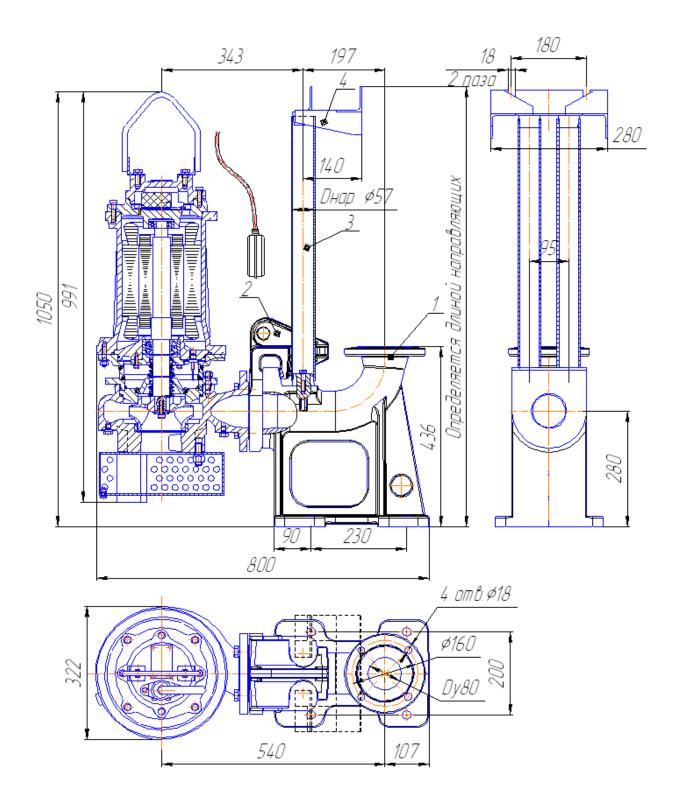


Рис. 39 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 80/160-11/2 с опускным устройством.

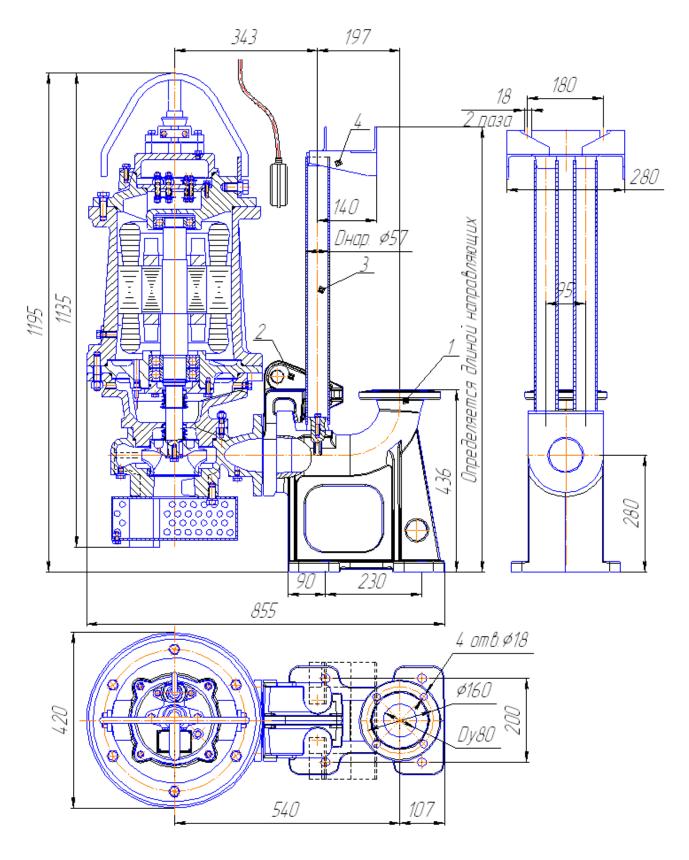


Рис. 40 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 80/160-15/2 с опускным устройством.

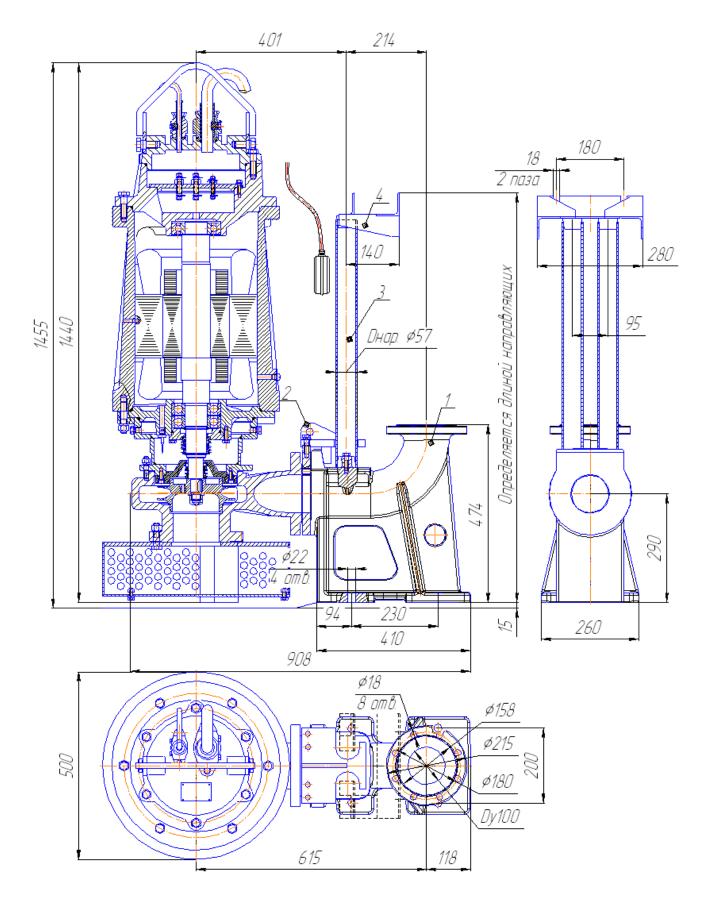


Рис. 41 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 100/200-45/2 с опускным устройством.

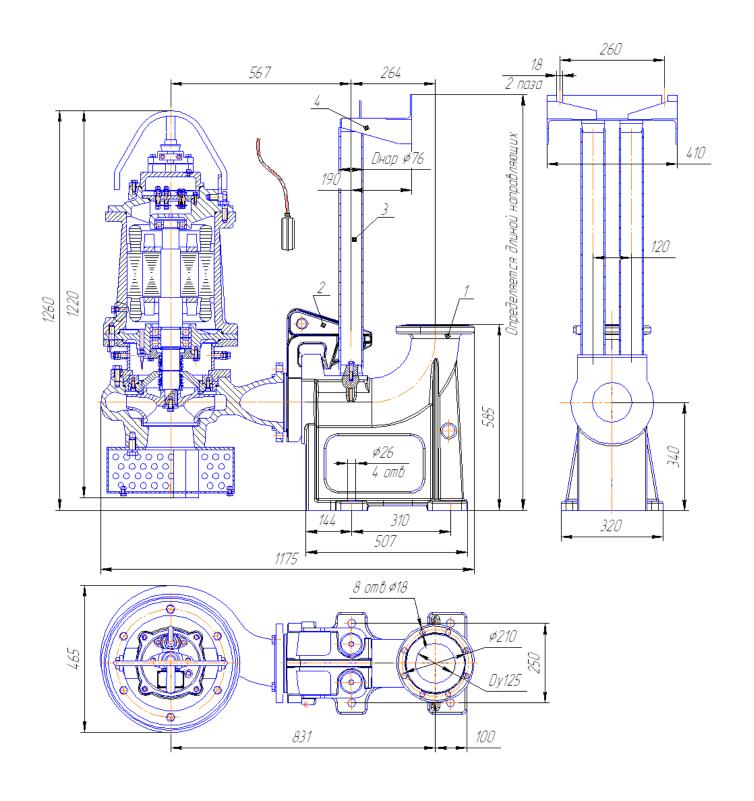


Рис. 42 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 125/250 - 15/4 с опускным устройством.

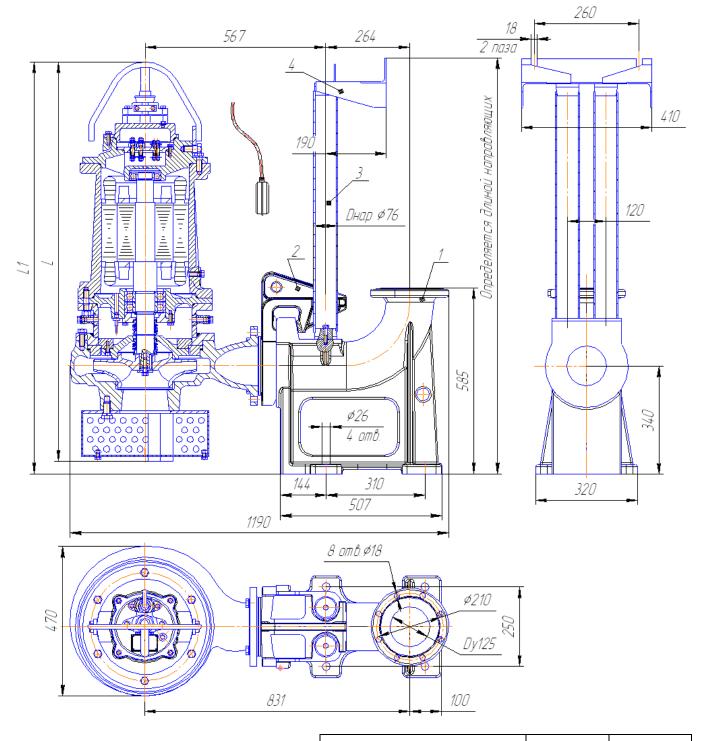


Рис. 43 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 125/315 — 18,5/4; ПД 125/315 — 30/4 с опускным устройством.

Обозначение насоса «Иртыш»	L	L1
ПД 125/315 — 18,5/4	1255	1295
ПД 125/315 — 30/4	1345	1385

1. Фланцевый нагнетательный Направляющие; 4. Кронштейн.

патрубок; 2. Опорный соединитель; 3.

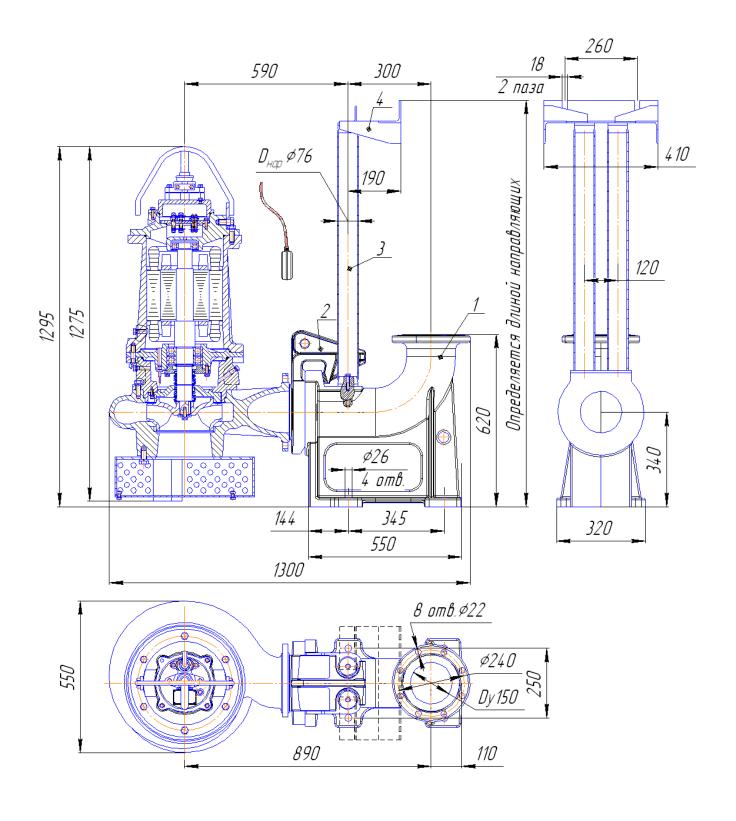


Рис. 44 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 150/250 – 18,5/4 с опускным устройством.

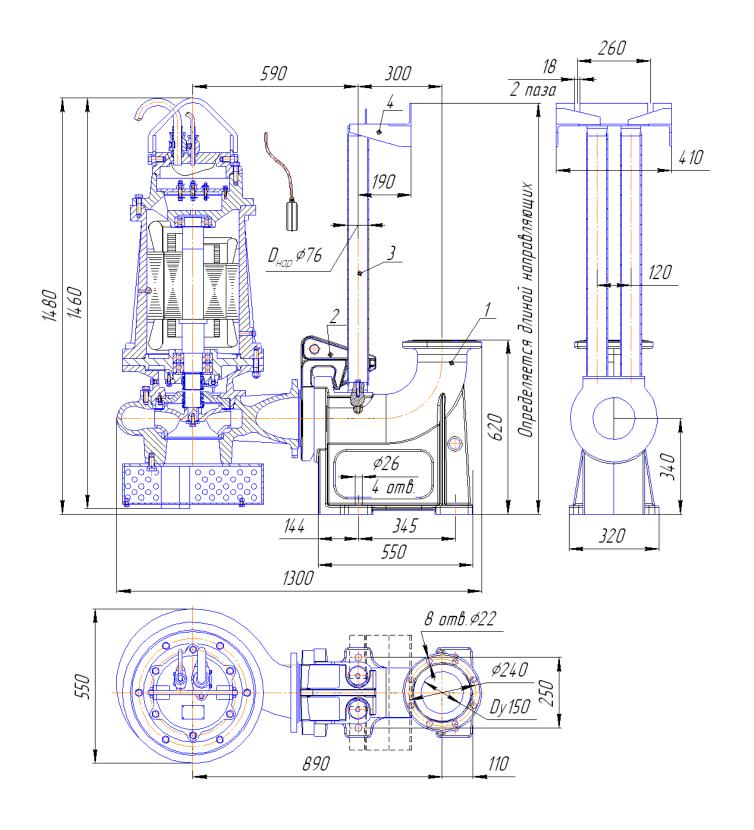


Рис. 45 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 150/250 - 37/4 с опускным устройством.

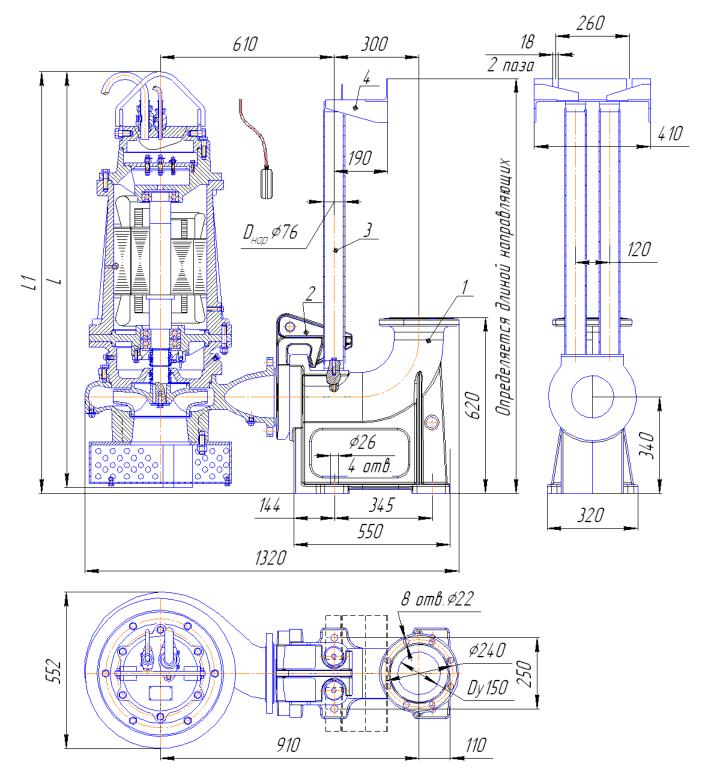
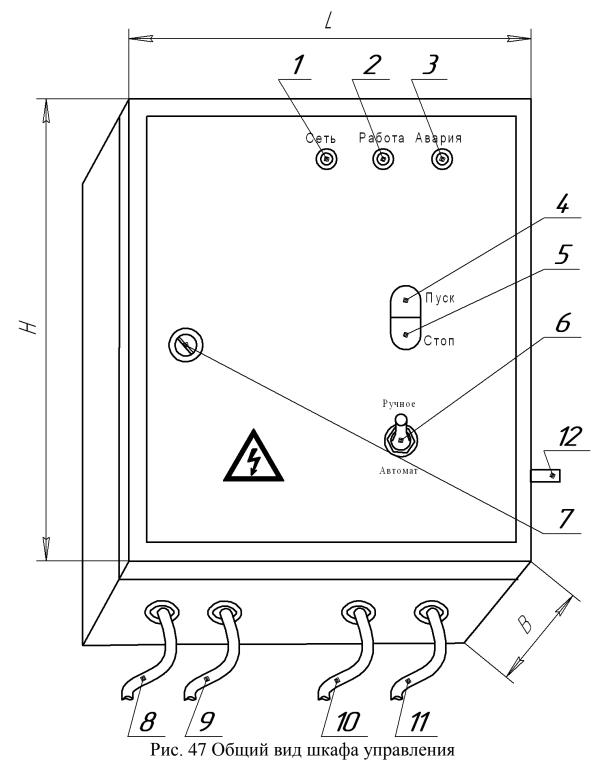



Рис. 46 Общий вид и габаритные размеры электронасоса "Иртыш" ПД 150/315 - 37/4; ПД 150/315 - 45/4; ПД 150/315 - 55/4 с опускным устройством.

Обозначение насоса «Иртыш»	L	L1
ПД 150/315 — 37/4 ПД 150/315 — 45/4	1470	1490
ПД 150/315 — 55/4	1525	1545

электронасосов "Иртыш" мощностью от 1,1 до 11кВт(LxВхНсм. таблицу 3).

- Сигнальный светодиод «Сеть»;
- Сигнальный светодиод «Работа»; 2
- Сигнальный светодиод «Авария»;
- Кнопка «ПУСК»; 4
- 5 Кнопка «СТОП»;
- Переключатель «Ручное»/«Автомат»; 6
- 7 Замок:
- 8 Кабель питающий (в комплект поставки не входит);
- 9 Силовой кабель насоса;
- 10 Кабель цепей контроля для насоса "Иртыш"11, М11;
- 11 Кабель(-ли) поплавкового(-ых) выключателя(-ей) (в комплект поставки не входит)
- 12 Болт заземления;

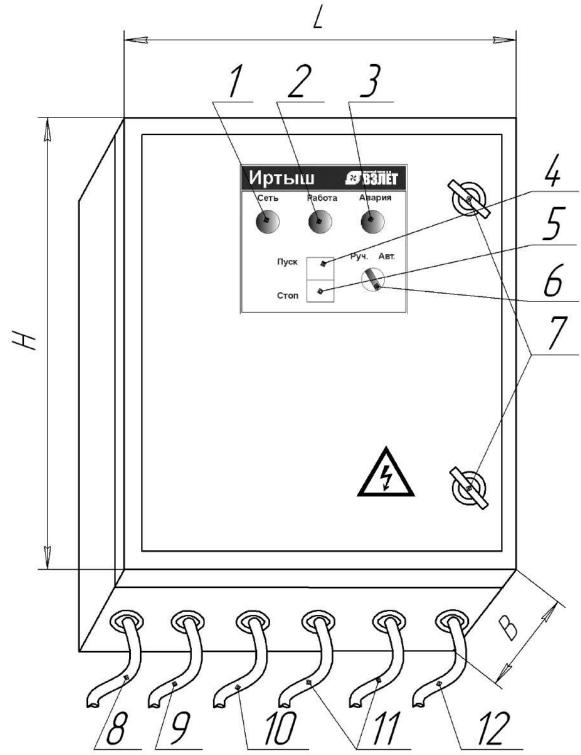


Рис. 48 Общий вид шкафа управления

электронасосов "Иртыш" мощностью от 15 до 55кВт (LxВхНсм. таблицу 3).

- 1 Сигнальный светодиод «Сеть»;
- 2 Сигнальный светодиод «Работа»;
- 3 Сигнальный светодиод «Авария»;
- 4 Кнопка «ПУСК»;
- 5 Кнопка «СТОП»;
- 6 Переключатель «Ручное»/«Автомат»;
- 7 Замок;
- 8 Кабель питающий (в комплект поставки не входит);
- 9 Силовой кабель насоса;
- 10 Кабель цепей контроля;
- 11 Кабель(-ли) поплавкового(-ых) выключателя(-ей) (в комплект поставки не входит);
- 12 Кабель световой сигнализации.

Рис. 49 Монтажная схема подключения шкафа управления: электронасосов «Иртыш» мощностью от 1,1 до 7,5 кВт.

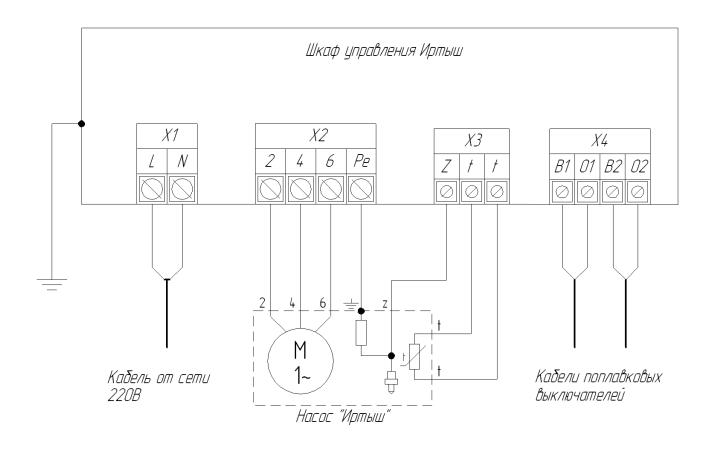


Рис. 50 Монтажная схема подключения шкафа управления: электронасосов «Иртыш» ПФС 50/125 – M1,1/2.

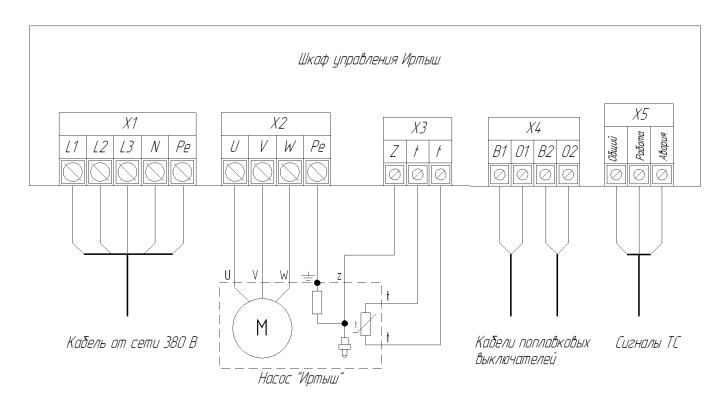


Рис. 51 Монтажная схема подключения шкафа управления: электронасосов «Иртыш» мощностью от 11 до 55кВт.

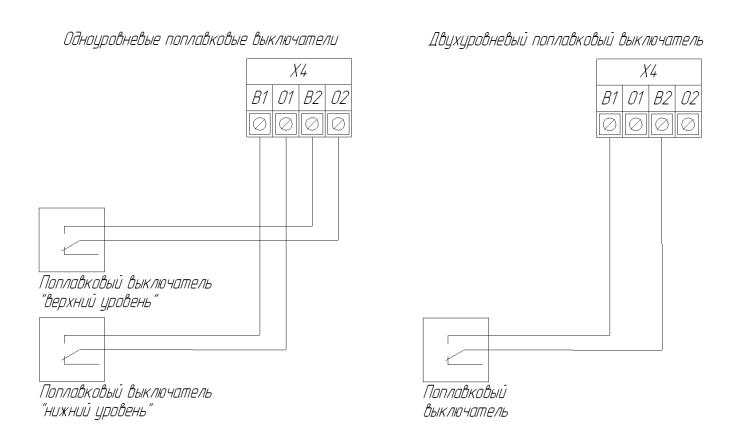


Рис. 52 Монтажная схема подключения поплавковых выключателей.

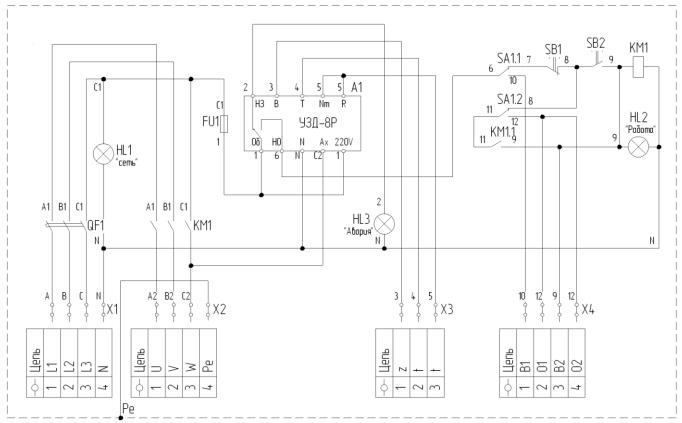


Рис. 53 Принципиальная схема подключения шкафа управления электронасосов «Иртыш» мощностью от 1,1 до 3кВт.

QF1 - автомат;

SB1 - "СТОП"- кнопка;

SB2 - "ПУСК"- кнопка;

HL1 - "Сеть"- светодиод;

HL2 - "Работа" - светодиод;

HL3 - "Авария" - светодиод;

SA1 - "ручн./автомат" - тумблер;

А1 - устройство защиты двигателя УЗД-8Р;

FU1 - предохранитель;

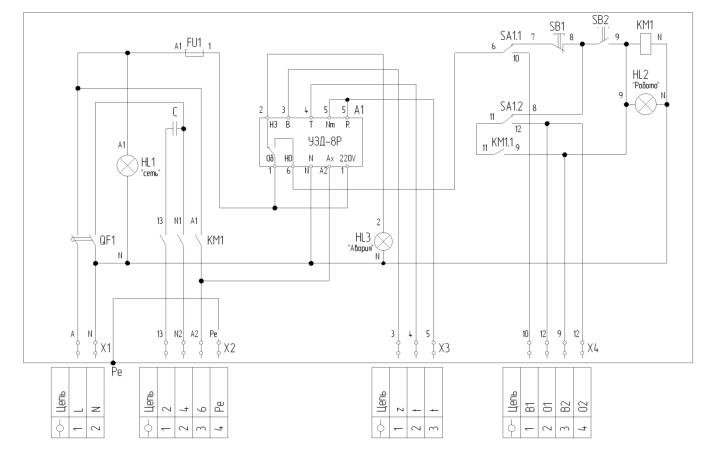


Рис. 54 Принципиальная схема подключения шкафа управления электронасосов «Иртыш» ПФС 50/125 – M1,1/2.

QF1 - автомат;

SB1 - "СТОП"- кнопка;

SB2 - "ПУСК"- кнопка;

HL1 - "Сеть"- светодиод;

HL2 - "Работа"- светодиод;

HL3 - Авария" - светодиод;

SA1 - "ручн./автомат" - тумблер;

А1 - устройство защиты двигателя УЗД-8Р;

FU1 - предохранитель;

С – конденсатор;

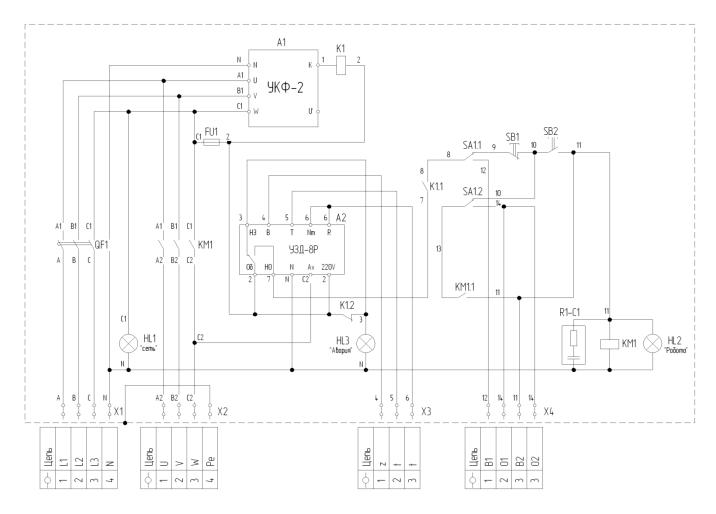


Рис. 55 Принципиальная схема подключения шкафа управления электронасосов «Иртыш» мощностью от 4 до 7,5 кВт с УКФ-4.

К1 – промежуточное реле;

QF1 - автомат;

SB1 - "СТОП"- кнопка;

SB2 - "ПУСК"- кнопка;

HL1 - "Сеть"- светодиод;

HL2 - "Работа"- светодиод;

HL3 - "Авария" - светодиод;

FU1 – предохранитель;

SA1 - "ручн./автомат" - тумблер;

А1 – устройство контроля фаз УКФ-4;

А2 - устройство защиты двигателя УЗД-8Р;

FU1 - предохранитель;

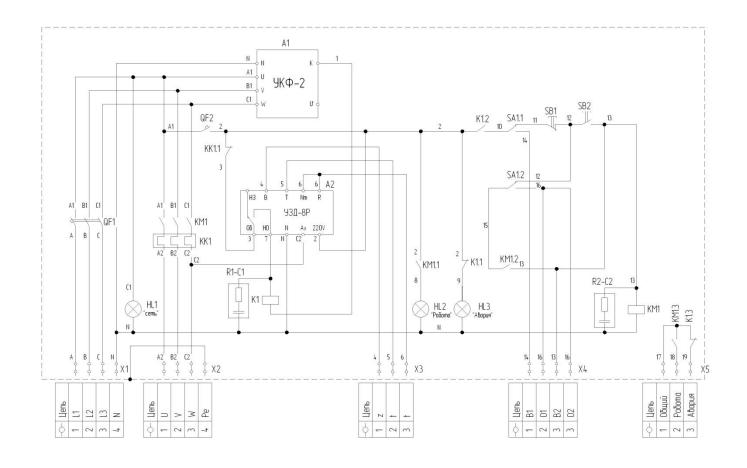


Рис. 56 Принципиальная схема подключения шкафа управления электронасосов «Иртыш» мощностью от 11 до 55кВт с УКФ-4.

К1,2 – промежуточное реле;

КК1 – тепловое реле;

QF1,2 - автомат;

SB1 - "СТОП"- кнопка;

SB2 - "ПУСК"- кнопка;

HL1 - "Сеть"- светодиод;

HL2 - "Работа"- светодиод;

HL3 - "Авария" - светодиод;

SA1 - переключатель "ручн./автомат";

А1 - устройство контроля фаз УКФ-4;

А2 - устройство защиты двигателя УЗД-8Р;

				Таолица
Дата (год, месяц)	Перекачиваем ая жидкость	Общее время работы в часах	Замечания о работе	Подпись

Į	Дата		Таблица Должность, фамилия и подпись
Установки на хранение	Снятия с хранения	Условия хранения	ответственного за хранение

Сведения о ремонте.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41

Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

сайт: www.vzlet.nt-rt.ru || эл. почта: vtz@nt-rt.ru